Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 445-450    DOI: 10.11901/1005.3093.2016.541
  本期目录 | 过刊浏览 |
无机土壤固化剂对生土材料的改性及其机理
胡明玉(),付超,魏丽丽,郑江
南昌大学建筑工程学院 南昌 330031
Effect of Inorganic Soil Stabilizer on Properties of Raw Soil Material
Mingyu HU(),Chao FU,Lili WEI,Jiang ZHENG
School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031,China
引用本文:

胡明玉,付超,魏丽丽,郑江. 无机土壤固化剂对生土材料的改性及其机理[J]. 材料研究学报, 2017, 31(6): 445-450.
Mingyu HU, Chao FU, Lili WEI, Jiang ZHENG. Effect of Inorganic Soil Stabilizer on Properties of Raw Soil Material[J]. Chinese Journal of Materials Research, 2017, 31(6): 445-450.

全文: PDF(1600 KB)   HTML
摘要: 

研究了无机土壤固化剂对生土材料强度、耐水性和抗冻性能的影响,和无机土壤固化剂提高生土材料强度、耐水性和抗冻性的机理。结果表明,无机土壤固化剂掺量为20%~25%时60 d抗压强度、软化系数和抗冻性指标(BDR)分别达到8.78 MPa、0.85和38.38%,具有较高的强度、耐水性和抗冻性。无机土壤固化剂与生土中的SiO2和Al2O3反应生成Ca1.7MgO3SiO4、2CaOAl2O3SiO2和Na2CaSiO4等新产物,再加上无机土壤固化剂中α-C2S和γ-C2S水化生成C-S-H凝胶,是使生土材料产生强度、耐水性和抗冻性的主要原因。

关键词 无机非金属材料生土材料无机土壤固化剂抗压强度软化系数抗冻性    
Abstract

The effect of inorganic soil stabilizer, as soil modifier, on the compression strength, water resistance, freeze-thaw resistance of the raw soil materials was assessed, whilst the prepared materials were characterized by means of scanning electron microscope and X-ray diffractometer. The results show that the compressive strength, softening coefficient and freeze-thaw resistance (BDR) are 8.78 MPa, 0.85 and 38.38% respectively for the raw soil material with addition of 20%~25% inorganic soil stabilizer after maintenance for 60 days, which indicates that the material has an excellent performance. The inorganic soil stabilizer reacts with SiO2 and Al2O3 in the soil to generate new products such as Ca1.7MgO3SiO4, 2CaOAl2O3SiO2 and Na2CaSiO4, in the meanwhile, α-C2S and γ-C2S within the modified admixture may react with water to produce C-S-H gel, which are the main causes responsible to the enhancement of the performance of the raw soil material.

Key wordsinorganic non-metallic material    raw soil material    inorganic soil stabilizer    compressive strength    softening coefficient    frost resistance
收稿日期: 2016-09-13     
基金资助:国家自然科学基金(51362021),江西省水利厅科技项目(KT201331)
Particle size/mm 20 10 5 2 1 0.5 0.25 0.075
Percentage of total soil mass less than this aperture/% 93.19 78.10 67.62 53.36 49.72 32.31 13.78 1.51
表1  原土颗粒分布
No. Inorganic soil stabilizer content /% Raw soil content/% Water-solid ratio
S-0-100 0 100 0.15
S-10-90 10 90 0.15
S-15-85 15 85 0.16
S-20-80 20 80 0.17
S-25-75 25 75 0.18
表2  实验配合比
图1  养护龄期与抗压强度关系曲线
图2  养护龄期与吸水饱和抗压强度关系曲线
图3  养护龄期与软化系数关系曲线
图4  无机土壤固化剂掺量与抗冻次数关系曲线
图5  无机土壤固化剂掺量与抗压强度关系曲线
图6  无机土壤固化剂掺量与损失率关系曲线
图7  不同掺量无机土壤固化剂的生土材料衍射图
图8  生土原料(a)和掺25%无机土壤固化剂的生土材料(b)的SEM照片
[1] Wang Q.Study on modification of raw soil material [D]. Chongqing: Chongqing University, 2009
[1] (王琴. 生土材料的改性研究 [D]. 重庆, 重庆大学, 2009)
[2] Tian X F, Zhang D J, Hou H B, et al.Microstructure of weak soil stabilization slag cementing material[J]. J. Chin. Ceramic Soc., 2006, 34: 636
[2] (田晓峰, 张大捷, 侯浩波等. 矿渣胶凝材料稳定软土的微观结构[J]. 硅酸盐学报, 2006, 34: 636)
[3] Liu Q B, Xiang W, Zhang W F, et al.Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock Soil Mechan., 2009, 30: 2286
[3] (刘清秉, 项伟, 张伟锋等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30: 2286)
[4] Zha F S, Liu S Y, Du Y J.Experiment on improvement of expansive clays with lime-fly ash[J]. J. Southeast Univ.(Nat. Sci. Ed.), 2007, 37: 339
[4] (查甫生, 刘松玉, 杜延军. 石灰-粉煤灰改良膨胀土试验[J]. 东南大学学报(自然科学版), 2007, 37: 339)
[5] Liu J, Shi B, Jiang H T, et al.Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer[J]. Eng. Geol., 2011, 117: 114
[6] Jayasinghe C, Kamaladasa N.Compressive strength characteristics of cement stabilized rammed earth walls[J]. Construct. Build. Mater., 2007, 21: 1971
[7] Xu H, Zhang D Q, Zhang X F.Research on stabilized soil strength testing of Chang-Yu freeway[J]. J. Jilin Univ.(Earth Sci. Ed.), 2002, 32: 69
[7] (许晖, 张冬青, 张喜发. 长余高速公路稳定土强度试验研究[J]. 吉林大学学报(地球科学版), 2002, 32: 69)
[8] Lv Q F, Li X Y, Zhao Y X, et al.Properties of modified loess under freeze-thaw cycles[J]. J. Central South Univ.(Sci. Technol.), 2014, 45: 819
[8] (吕擎峰, 李晓媛, 赵彦旭等. 改性黄土的冻融特性[J]. 中南大学学报(自然科学版), 2014, 45: 819)
[9] Liu J, Chu J Y, Zhao J B, et al.Effect of admixures on mechanical properties of raw clay material for wall[J]. J. Build. Mater., 2010, 13: 446
[9] (刘军, 褚俊英, 赵金波等. 掺和料对生土墙体材料力学性能的影响[J]. 建筑材料学报, 2010, 13: 446)
[10] Qian J S, Wang Q, Jia X W, et al.Research on preparation of adobe materials with desulfurized wastes from coal-fired power plant[J]. New Build. Mater., 2009, 36(2): 28
[10] (钱觉时, 王琴, 贾兴文等. 燃煤电厂脱硫废弃物用于改性生土材料的研究[J]. 新型建筑材料, 2009, 36(2): 28)
[11] Xiao H S.On the strength of modified soil-lime[J]. J. Hunan Univ.(Nat. Sci.), 1988, 15(3): 85
[11] (肖鹤松. 改性灰土强度的研究[J]. 湖南大学学报(自然科学版), 1988, 15(3): 85)
[12] Liu Z H, Li Y F, Yang J J, et al.Experimental research on properties of raw soil modified by geopolymeric cement[J]. Bullet. Chin. Ceramic Soc., 2016, 35: 73
[12] (刘志华, 李园枫, 杨久俊等. 基于土聚水泥生土材料改性试验研究[J]. 硅酸盐通报, 2016, 35: 73)
[13] Ahmed A, Ugai K.Environmental effects on durability of soil stabilized with recycled gypsum[J]. Cold Regions Sci. Technol., 2011, 66: 84
[14] Degirmenci N.The using of waste phosphogypsum and natural gypsum in adobe stabilization[J]. Construct. Build. Mater., 2008, 22: 1220
[15] Zhang T J, Hong Z S, Deng D S, et al.Predication method of unconfined compression strength for cemented silty soils[J]. J. Southeast Univ.(Nat. Sci. Ed.), 2008, 38: 839
[15] (张铁军, 洪振舜, 邓东升等. 水泥固化粉质土的无侧限抗压强度预测[J]. 东南大学学报(自然科学版), 2008, 38: 839)
[16] Liu J X, Zhang L, Yang J J.International advances in raw soil materials[J]. Mater. Rev., 2012, 26(23): 14
[16] (刘俊霞, 张磊, 杨久俊. 生土材料国内外研究进展[J]. 材料导报, 2012, 26(23): 14)
[17] Wang Y.Experimental research on raw-soil material modification in south shaanxi[J]. Build. Sci., 2011, 27(11): 49
[17] (王赟. 陕南生土材料改性试验研究[J]. 建筑科学, 2011, 27(11): 49)
[18] Fan H H, Gao J E, Wu P T.Prospect of researches on soil stabilizer[J]. J. Northwest Sci-Tech Univ. Agric. For.(Nat. Sci. Ed.), 2006, 34(2): 141
[18] (樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141)
[19] Li Q, Sun K W, Xu B, et al.Progress and application on curing mechanism of soil stabilizer[J]. Mater. Rev., 2011, 25(9): 64
[19] (李琴, 孙可伟, 徐彬等. 土壤固化剂固化机理研究进展及应用[J]. 材料导报, 2011, 25(9): 64)
[20] Prabakar J, Sridhar R S.Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construct. Build. Mater., 2002, 16: 123
[21] Hai R, Liu J X, Zhang M L, et al.The structure and properties of stabilized earth materials modified by plant fiber[J]. J. Build. Mater., 2015, 10: 1
[21] (海然, 刘俊霞, 张茂亮等. 植物纤维增强生土材料结构与性能研究[J]. 建筑材料学报, 2015, 10: 1)
[22] Liu J X.The research on the physical and mechanical properties of degradable clay based cementitois materials [D]. Zhengzhou: Zhengzhou University, 2013
[22] (刘俊霞. 黄河泥沙基可降解生土材料结构与性能研究 [D]. 郑州: 郑州大学, 2013)
[23] Lubica Kriskova, Yiannis Pontikes, et al.Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cement and Concrete Research, 2014, 55: 59
[24] Wang Q Q, Li F, Shen X D, et al.Relation between reactivity and electronic structure for α'L-, ?- and γ- dicalcium silicate: A first-principles study[J]. Cement and Concrete Research, 2014, 57: 28
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.