Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 714-720    DOI: 10.11901/1005.3093.2016.529
  研究论文 本期目录 | 过刊浏览 |
NiO电极材料的溶胶凝胶法合成及其超级电容的性能
弥宁1(), 赵磊1, 刘卯成2
1 陇东学院机械工程学院 庆阳 745000
2 兰州理工大学甘肃省有色金属新材料重点实验室 兰州 730050
NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance
Ning MI1(), Lei ZHAO1, Maocheng LIU2
1 School of Mechanical Engineering, Longdong University, Qingyang 745000, China
2 State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

弥宁, 赵磊, 刘卯成. NiO电极材料的溶胶凝胶法合成及其超级电容的性能[J]. 材料研究学报, 2017, 31(9): 714-720.
Ning MI, Lei ZHAO, Maocheng LIU. NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance[J]. Chinese Journal of Materials Research, 2017, 31(9): 714-720.

全文: PDF(964 KB)   HTML
摘要: 

用溶胶凝胶法和简单热处理合成的NiO电极材料,其最大比电容达到744 F/g。使用X射线粉末衍射、扫描电子显微镜、投射电子显微镜和N2气吸附解吸仪等手段表征了NiO材料的微观结构和聚集形态。将氧化镍和活性炭分别作为正负极组装非对称性电容器,用循环伏安法和恒流充放电法研究其在2 mol/L的KOH电解液中的超级电容性能。这种非对称性电容器表现出良好的能量密度、功率密度和循环稳定性,循环1000次后其循环稳定性能为初始比电容值的84.3%。

关键词 无机非金属材料非对称性电容器NiO溶胶凝胶超级电容器    
Abstract

NiO with maximum specific capacitance of 744 Fg-1 was successfully synthesized by sol-gel method and then simple calcination. The microstructure and aggregation morphology of the as-prepared NiO electrode were characterized by powder X-ray diffract ometer (XRD) and scanning electron microscopy (SEM), transmission electron microscopy (TEM) and BET. An asymmetric supercapacitor has been constructed with nickel oxide as the positive electrode and activated carbon as the negative electrode, respectively. The performance of the asymmetric supercapacitor was investigated in 2 mol/L KOH aqueous electrolyte using cyclic voltammetry (CV) and galvanostatic charge/discharge test. The asymmetric supercapacitor exhibited excellent energy density, power density and cycle stability, especially good electrochemical stability, i.e. even after consecutive 1,000 cycles the capacitance of the capacitor still kept at 84.3% of the initial value.

Key wordsinorganic non-metallic materials    asymmetric supercapacitor    nickel oxide    sol-gel    supercapatitor
收稿日期: 2016-07-27     
ZTFLH:  TB321  
基金资助:国家自然科学基金(21403099)和陇东学院青年科技创新项目(XYZK1608)
作者简介:

作者简介 弥 宁,男,1975年生,副教授

图1  NiO电极材料的XRD图谱
图2  NiO电极材料的扫描电镜图片
图3  NiO电极材料的透射电镜图片
图4  NiO电极材料的材料的吸附-脱附等温滞回线,插图为样品的孔径分布图
图5  AC电极和NiO电极在扫描速率5 mV/s时的循环伏安曲线
图6  电流密度为5 mAcm-2时的充放电曲线图
图7  非对称性超级电容器在2 mol/L KOH电解质中的电化学曲线图
图8  不同电流密度下非对称性超级电容器和AC双电层电容器比电容变化图
图9  非对称性超级电容器和AC双电层电容器的拉贡图
图10  电流密度为10 mAcm-2非对称性超级电容器循环寿命图(插图为非对称性超级电容器充放电曲线)
[1] Winter M, Brodd R J.What are batteries, fuel cells, and supercapacitors?[J]. Chem. Rev., 2004, 104: 4245
[2] Lunkenheimer P, Loidl A, Ottermann C R, et al.Correlated barrier hopping in NiO films[J]. Phys. Rev., 1991, 44B: 5927
[3] Kim T, Mo Y H, Nahm K S, et al.Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries[J]. J. Power Sources, 2006, 162: 1275
[4] Leitner K W, Winter M, Besenhard J O.Composite supercapacitor electrodes[J]. J. Solid State Electrochem., 2003, 8: 15
[5] Lewandowski A, Galinski M.Practical and theoretical limits for electrochemical double-layer capacitors[J]. J. Power Sources, 2007, 173: 822
[6] Brousse T, Taberna P L, Crosnier O, et al.Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. J. Power Sources, 2007, 173: 633
[7] Duffy N W, Baldsing W, Pandolfo A G.The nickel-carbon asymmetric supercapacitor—performance, energy density and electrode mass ratios[J]. Electrochim. Acta, 2008, 54: 535
[8] Burke A.R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim. Acta, 2007, 53: 1083
[9] Qu Q T, Shi Y, Tian S, et al.A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2[J]. J. Power Sources, 2009, 194: 1222
[10] Yoon J H, Bang H J, Prakash J, et al.Comparative study of Li[Ni1/3-Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications[J]. Mater. Chem. Phys., 2008, 110: 222
[11] Algharaibeh Z, Liu X R, Pickup P G.An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor[J]. J. Power Sources, 2009, 187: 640
[12] An K H, Kim W S, Park Y S, et al.Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Adv. Funct. Mater., 2001, 11: 387
[13] Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2007, 47: 373
[14] Cao L, Xu F, Liang Y Y, et al.Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density[J]. Adv. Mater., 2004, 16: 1853
[15] Ke Y F, Tsai D S, Huang Y S.Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates[J]. J. Mater. Chem., 2005, 15: 2122
[16] Kong L B, Zhang J, An J J, et al.MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode[J]. J. Mater. Sci., 2008, 43: 3664
[17] Fu H Y, Sun X Y, Gao X D, et al.Synthesis and characterization of benzothiazole derivatives for blue electroluminescent devices[J]. Synth. Met., 2009, 159: 254
[18] Itagaki M, Suzuki S, Shitanda I, et al.Impedance analysis on electric double layer capacitor with transmission line model[J]. J. Power Sources, 2007, 164: 415
[19] Sugimoto W, Iwata H, Yasunaga Y, et al.Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2003, 42: 4092
[20] Gupta V, Gupta S, Miura N.Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor[J]. J. Power Sources, 2010, 195: 3757
[21] Srinivasan V, Weidner J W.Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. J. Power Sources, 2002, 108: 15
[22] Zheng J P, Cygan P J, Jow T R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142: 2699
[23] Park B O, Lokhande C D, Park H S, et al.Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness[J]. J. Power Sources, 2004, 134: 148
[24] Srinivasan V, Weidner J W.An electrochemical route for making porous nickel oxide electrochemical capacitors[J]. J. Electrochem. Soc., 1997, 144: L210
[25] Lang J W, Kong L B, Wu W J, et al.Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite[J]. J. Mater. Sci., 2009, 44: 4466
[26] Palmas S, Ferrara F, Vacca A, et al.Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium[J]. Electrochim. Acta, 2007, 53: 400
[27] Kong L B, Lang J W, Liu M, et al.Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors[J]. J. Power Sources, 2009, 194: 1194
[28] Toupin M, Brousse T, Bélanger D.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chem. Mater., 2004, 16: 3184
[29] Wang X F, You Z, Ruan D B.A hybrid metal oxide supercapacitor in aqueous KOH electrolyte[J]. Chin. J. Chem., 2006, 24: 1126
[30] Liu K C, Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors[J]. J. Electrochem. Soc., 1996, 143: 124
[31] Bai Y S.Study on the preparation method of electrode materials in electrochemical supercapacitors [D]. Nanjing: Nanjing Tech University, 2005(柏云杉. 超级电容器电极材料的制备方法研究 [D]. 南京: 南京工业大学, 2005)
[32] Guo H.The performance of the oxidation of nickel and its compounds supercapacitor [D]. Harbin: Harbin Engineering University, 2012(郭慧. 氧化镍及其复合物超级电容器的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012)
[33] Cao L, Lu M, Li H L.Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance[J]. J. Electrochem. Soc., 2005, 152: A871
[34] Wang X F, Ruan D B, You Z.Application of spherical Ni(OH)2/CNTs composite electrode in asymmetric supercapacitor[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1129
[35] Wei T Y, Chen C H, Chang K H, et al.Cobalt oxide aerogels of ideal Supercapacitive properties prepared with an epoxide synthetic route[J]. Chem. Mater., 2009, 21: 3228
[36] Li Y M, Li W Y, Chou S L, et al.Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres[J]. J. Alloys Compd., 2008, 456: 339
[37] K?tz R, Carlen M.Principles and applications of electrochemical capacitors[J]. Electrochim. Acta, 2000, 45: 2483
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.