Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (5): 374-380    DOI: 10.11901/1005.3093.2016.498
  论文 本期目录 | 过刊浏览 |
二维褶皱状V2O5纳米材料的制备和储锂性能
李延伟1,2, 谢志平1, 刘参政1, 姚金环1(), 姜吉琼1, 杨建文1
1 广西电磁化学功能物质重点实验室桂林理工大学化学与生物工程学院 桂林 541004
2 中国科学院可再生能源重点实验室 广州 510640
Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial
Yanwei LI1,2, Zhiping XIE1, Canzheng LIU1, Jinhuan YAO1(), Jiqiong JIANG1, Jianwen YANG1
1 Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
2 Key Laboratory of Rrenewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
引用本文:

李延伟, 谢志平, 刘参政, 姚金环, 姜吉琼, 杨建文. 二维褶皱状V2O5纳米材料的制备和储锂性能[J]. 材料研究学报, 2017, 31(5): 374-380.
Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. Chinese Journal of Materials Research, 2017, 31(5): 374-380.

全文: PDF(2718 KB)   HTML
摘要: 

用溶胶凝胶法制备V2O5凝胶,调节凝胶的pH值和后续的冷冻干燥以及退火,制备出V2O5纳米材料。X射线衍射(XRD)和场发射扫描电镜(FESEM)的测试结果表明,该样品是一种具有大面积二维褶皱形貌的正交晶相V2O5纳米材料,每个纳米片又由大量的纳米小颗粒构成。使用循环伏安(CV)、交流阻抗(EIS)、电位驰豫(PRT)和充放电测试等手段表征了样品的储锂性能,结果表明,因具有独特的二维褶皱纳米结构,该纳米材料具有比已经商业化的V2O5更高的放电比容量、更好的大电流充放电性能、优异的电化学循环稳定性和更好的电化学反应动力学性能。

关键词 材料合成与加工工艺V2O5溶胶凝胶法正极材料储锂性能    
Abstract

V2O5 gel was prepared by sol-gel method and V2O5 nanomaterial was fabricated by freeze-drying the V2O5 gel with proper pH value and followed by annealing treatment. XRD and FESEM results revealed that the prepared V2O5 nanomaterial consists of a single orthorhombic phase small V2O5 nanoparticles with alarge are a two-dimensional fold-like morphology. The lithium storage performance of the prepared V2O5 nanomaterial was characterized by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), potential relaxation technique(PRT), and charge-discharge tests. Due to the unique two-dimensional fold-like nanostructure, the prepared V2O5 nanomaterial exhibits much higher specific discharge capacity, better high rate performance, excellent cycling stability, and enhanced electrochemical reaction kinetics rather than the commercial V2O5. Therefore, the two-dimensional fold-like V2O5 nanomaterial is a very promising cathode material for lithium-ion batteries.

Key wordssynthesizing and processing technics    V2O5    sol-gel method    cathode material    lithium storage performance
收稿日期: 2016-08-23     
基金资助:国家自然科学基金(51664012, 51464009, 21263003)、广西自然科学基金(2015GXNSFGA139006, 2014GXNSFBA118238)和中国科学院可再生能源重点实验室开放基金(y507k61001)
作者简介:

作者简介 李延伟,男,1979年生,教授

图1  N-V2O5样品的XRD谱
图2  N-V2O5和C-V2O5样品的FESEM图
图3  N-V2O5和C-V2O5的CV和EIS图
图4  N-V2O5和C-V2O5电极的循环性能和倍率性能图及相应的充放电曲线
图5  N-V2O5电极的充/放电曲线、OCP-t曲线和ln[exp(φ∞-φ)F/RT-1] vs. t曲线以及N-V2O5和C-V2O5的锂离子扩散系数
[1] Goodenough J B, Kim Y.Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587
[2] Han P, Yue Y, Liu Z, et al.Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries[J]. Energy Environ. Sci., 2011, 4(11): 4710
[3] Wang Y, Zhang H J, Lim W X, et al.Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries[J]. J. Mater. Chem., 2011, 21(7): 2362
[4] Yan D J, Zhu X D, Wang K X, et al.Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries[J]. J. Mater. Chem. A, 2016, 4(13): 4900
[5] Liang S Q, Pan A Q, Liu J, et al.Research developments of V-based nanomaterials as cathodes for lithium batteries[J]. Chin. J. Nonferrous Met., 2011, 21(10): 2448(梁叔全, 潘安强, 刘军等. 锂离子电池纳米钒基正极材料的研究进展[J]. 中国有色金属学报, 2011, 21(10): 2448)
[6] Gao X T, Zhu X D, Le S R, et al.Boosting high-rate lithium storage of V2O5 nanowires by self-assembly on n-doped graphene nanosheets[J]. ChemElectroChem, 2016, 3: 1
[7] Liu D W, Cao G Z.Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation[J]. Energy Environ. Sci., 2010, 3(9): 1218
[8] Pan A Q, Wu H B, Zhang L, et al.Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energy Environ. Sci., 2013, 6(5): 1476
[9] Li Y W, Yao J H, Uchaker E, et al.Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries[J]. Adv. Energy Mater., 2013, 3(9): 1171
[10] Wang Y, Li H, He P, et al.Nano active materials for lithium-ion batteries[J]. Nanoscale, 2010, 2(8): 1294
[11] Liu J, Liu X W.Two-dimensional nanoarchitectures for lithium storage[J]. Adv. Mater., 2012, 24(30): 4097
[12] Liang S, Qin M, Tang Y, et al.Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries[J]. Met. Mater. Int., 2014, 20(5): 983
[13] An Q, Wei Q, Mai L, et al.Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries[J]. Phys. Chem. Chem. Phys., 2013, 15(39): 16828
[14] Huang J, Qiao X, Xu Z, et al.V2O5 self-assembled nanosheets as high stable cathodes for Lithium-ion batteries[J]. Electrochimica. Acta, 2016, 191: 158
[15] Song H, Zhang C, Liu Y, et al.Facile synthesis of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries[J]. J. Power Sources, 2015, 294: 1
[16] Li Y W, Li Y X, Yao J H, et al.The structure and electrochemical performance of α/β mutually embedded nickel hydroxide[J]. Chin. J. Mater. Res., 2011, 25(1): 51(李延伟, 李月晓, 姚金环等. α/β互嵌氢氧化镍电极活性材料的结构和电化学性能[J]. 材料研究学报, 2011, 25(1): 51)
[17] Li Y W, Yao J H, Liu C J, et al.Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes[J]. Int. J. Hydrogen Energy, 2010, 35(6): 2539
[18] Wu L, Zhong S, Lu J, et al.Synthesis of Cr-doped LiMnPO4/C cathode materials by sol-gel combined ball milling method and its electrochemical properties[J]. Ionics, 2013, 19(7): 1061
[19] Cheah Y L, Aravindan V, Madhavi S.Synthesis and enhanced lithium storage properties of electrospun V2O5 nanofibers in full-cell assembly with a spinel Li4Ti5O12 anode[J]. ACS Appl. Mater. Interfaces, 2013, 5(8): 3475
[20] Ragupathy P, Shivakumara S, Vasan H N, et al.Preparation of nanostrip V2O5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries[J]. J. Phys. Chem. C, 2008, 112(42): 16700
[21] Wang H E, Chen D S, Cai Y, et al.Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries[J]. J. Colloid Interface Sci., 2014, 418: 74
[22] Li Y W, Yao J H, Uchaker E, et al.Sn-doped V2O5 film with enhanced lithium-ion storage performance[J]. J. Phys. Chem. C, 2013, 117(45): 23507
[23] Chen D Z, Quan H Y, Luo S L, et al.Reduced graphene oxide enwrapped vanadium pentoxide nanorods as cathode materials for lithium-ion batteries[J]. Physica E, 2014, 56: 231
[24] Wang Q, Li H, Huang X, et al.Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique[J]. J. Electrochem. Soc., 2001, 148(7): A737
[25] Wu C, Wu F, Chen L, et al. Fabrications and electrochemical properties of fluorine-modified spinel LiMn2O4 for lithium ion batteries [J]. Solid State Ionics, 2002, 152-153: 327
[1] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[2] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[3] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[4] 朱海勇, 张伟. 锰掺杂和氧化铌种子层对铌酸钾钠薄膜电性能的影响[J]. 材料研究学报, 2022, 36(12): 945-950.
[5] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[6] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[7] 武梦姣, 任召辉, 田鹤, 韩高荣. 铁电极化诱导的PbTiO3薄膜的取向聚集生长和晶粒尺寸调控[J]. 材料研究学报, 2020, 34(9): 650-658.
[8] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[9] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[10] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[11] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[12] 周抒予,靳晓哲,刘佳,田瑞雪,吴爱民,黄昊. 作为钠硫电池正极的碳约束NiS2纳米结构中钠离子的储运特性[J]. 材料研究学报, 2020, 34(3): 191-197.
[13] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[14] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[15] 周鹏飞,张鹏,杜云慧,王玉洁,左成. 喷雾干燥法制备富锂正极材料及其电化学性能[J]. 材料研究学报, 2019, 33(7): 481-487.