Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (7): 511-517    DOI: 10.11901/1005.3093.2016.394
  研究论文 本期目录 | 过刊浏览 |
金掺杂降低碳纳米管接触电阻的实验研究
刁加加1, 常春蕊2(), 张志明3, 张好强1, 孙红婵1, 安立宝1()
1 华北理工大学机械工程学院 唐山 063009
2 华北理工大学理学院 唐山 063009
3 华北理工大学材料科学与工程学院 唐山 063009
Reducin g Contact Resistance of Carbon Nanotubes by Au Doping
Jiajia DIAO1, Chunrui CHANG2(), Zhiming ZHANG3, Haoqiang ZHANG1, Hongchan SUN1, Libao AN1()
1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063009, China
2 College of Science, North China University of Science and Technology, Tangshan 063009, China
3 College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063009, China
全文: PDF(2282 KB)   HTML
摘要: 

降低与金属之间的接触电阻是碳纳米管在微纳电子领域获得应用的前提,掺杂金纳米粒子可有效降低碳纳米管的接触电阻。本文采用高温焙烧在碳纳米管表面构造缺陷和亲水基团,然后将碳纳米管在氯金酸水溶液中超声浸泡以吸附氯金酸,再在氢气气氛下加热还原氯金酸为金。扫描电子显微(SEM)图片表明碳纳米管被成功地掺杂了金纳米粒子,X射线能量散射谱(EDS)和X射线光电子谱(XPS)表明金是唯一掺杂在碳纳米管上的粒子。掺杂后碳纳米管的拉曼光谱中G带波数降低说明对碳纳米管掺杂金为N型掺杂。N型掺杂剂将电子转移给邻近的碳原子,使碳纳米管中的电子数量增加,进而增强了碳纳米管的导电性。利用介电电泳法将碳纳米管组装到一对金电极之间,并使用精密电感电容电阻(LCR)测试仪实时测量。结果表明碳纳米管与金电极之间的接触电阻较掺杂前得到了有效改善,电阻值最大可降低近50%。

关键词 复合材料碳纳米管金纳米粒子掺杂接触电阻    
Abstract

A prerequisite for the application of carbon nanotubes (CNTs) in the industrial sectors of micro- and nano-electronics, it is essential to reduce its contact resistance with metal. Doping Au-nanoparticles can effectively reduce the contact resistance of CNTs. In this paper, a three step process was developed for doping Au-nanoparticles on CNTs, i.e. first, the CNTs are calcinated at high temperature to create defects and hydrophilic groups on their surface, then, the calcinated CNTs are dispersed ultrasonically in chloroauric acid solution to adsorb chloroauric acid, and finally, they are heated in hydrogen atmosphere at high temperature to produce Au-nanoparticles on the surface of CNTs. The produced CNTs are characterized by means of scanning electron microscopy (SEM) X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Results show that due to the Au-doping, the G-band peak of Raman spectra of the CNTs shifts to a lower frequency, which indicates that the doping is N-type. N-type dopants transfer electrons to adjacent carbon atoms and increase the electron quantity in CNTs, thereby increasing the electrical conductivity of CNTs. Subsequently, CNTs are assembled into the interval of two Au electrodes by dielectrophoresis (DEP), and the results of real-time measurement by using a precision inductance-capacitance-resistance (LCR) show that the contact resistance between the Au-doped CNTs and Au electrodes has been effectively reduced to ca. half of the original values between the bare CNTs and Au electrodes .

Key wordscomposite    carbon nanotube    Au nanoparticle    doping    contact resistance
收稿日期: 2016-07-09      出版日期: 2017-08-24
ZTFLH:  TB303  
基金资助:资助项目 国家自然科学基金(51172062,51472074)和华北理工大学研究生创新项目(2016S14)
作者简介:

作者简介 刁加加,女,1991年生,硕士生

引用本文:

刁加加, 常春蕊, 张志明, 张好强, 孙红婵, 安立宝. 金掺杂降低碳纳米管接触电阻的实验研究[J]. 材料研究学报, 2017, 31(7): 511-517.
Jiajia DIAO, Chunrui CHANG, Zhiming ZHANG, Haoqiang ZHANG, Hongchan SUN, Libao AN. Reducin g Contact Resistance of Carbon Nanotubes by Au Doping. Chinese Journal of Materials Research, 2017, 31(7): 511-517.

链接本文:

http://www.cjmr.org/CN/10.11901/1005.3093.2016.394      或      http://www.cjmr.org/CN/Y2017/V31/I7/511

图1  碳纳米管样品的SEM图片
图2  碳纳米管样品的EDS谱图
图3  MWNT-T-Au样品的XPS谱
图4  各碳纳米管样品的拉曼光谱图
图5  掺杂前后碳纳米管与电极间接触电阻的变化
[1] Meng T, Wang C Y, Wang S Y.First-principles study of contact between Ti surface and semiconducting carbon nanotube[J]. Journal of Applied Physics, 2007, 102(1): 013709-1
doi: 10.1063/1.2748716
[2] Nemec N, Tománek D, Cuniberti G.Contact dependence of carrier injection in carbon nanotubes: an ab initio study[J]. Physical Review Letters, 2006, 96(7): 076802-1
[3] Tan M, Ye X, Wang X, et al.Improving contact of CNT-metal by annealing[J]. Journal of Functional Materials and Devices, 2008, 14(1): 227
[4] Asaka K, Karita M, Saito Y.Modification of interface structure and contact resistance between a carbon nanotube and a gold electrode by local melting[J]. Applied Surface Science, 2011, 257(7): 2850
doi: 10.1016/j.apsusc.2010.10.079
[5] Chen C, Yan L, Kong E S, et al.Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 2006, 17(9): 2192
doi: 10.1088/0957-4484/17/9/019
[6] Madsen D N, Mølhave K, Mateiu R, et al.Soldering of nanotubes onto microelectrodes[J]. Nano Letters, 2003, 3(1): 47
doi: 10.1021/nl0257972
[7] Song X.Study on mechanism of carbon nanotube/metal interfacial bonding and related technology [D].Shanghai: Shanghai Jiao Tong University, 2010(宋晓辉. 碳纳米管/金属界面键合机制及其相关技术研究 [D]. 上海: 上海交通大学, 2010)
[8] Liu E K, Zhu B S, Luo J S, The Physics of Semiconductors (7th Edition) [M]. Beijing: Publishing House of Electronics Industry, 2011(刘恩科, 朱秉升, 罗晋生. 半导体物理学(第七版) [M]. 北京: 电子工业出版社, 2011)
[9] Kong B S, Jung D H, Oh S K, et al.Single-walled carbon nanotube gold nanohybrids: application in highly effective transparent and conductive films[J]. The Journal of Physical Chemistry C, 2007, 111(23): 8377
doi: 10.1021/jp071297r
[10] Kim K K, Bae J J, Park H K, et al.Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping[J]. Journal of the American Chemical Society, 2008, 130(38): 12757
doi: 10.1021/ja8038689 pmid: 18729358
[11] Kim S, Kulkarni D D, Rykaczewski K, et al.Fabrication of an ultralow-resistance ohmic contact to MWCNT - metal interconnect using graphitic carbon by electron beam-induced deposition (EBID)[J]. IEEE Transactions on Nanotechnology, 2012, 11(6):1223
doi: 10.1109/TNANO.2012.2220377
[12] Tian C H.Catalyst performance of Pt-Sn/MWCNTs (modified) on the dehydrogenation of propane [D]. Shanghai: Shanghai Normal University, 2014(田春华. 多壁碳纳米管改性负载铂锡在丙烷脱氢反应中催化性能的研究 [D]. 上海: 上海师范大学, 2014)
[13] Skákalová V, Kaiser A B, Dettlaff-Weglikowska U, et al.Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7174
[14] Rao A M, Eklund P C, Bandow S, et al.Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering[J]. Nature, 1997, 388(6639): 257
doi: 10.1038/40827
[1] 郭瑞彦, 张国利, 岳海亮, 陈联云. 聚氨酯涂层对复合材料层板冲击后压缩性能的影响[J]. 材料研究学报, 2017, 31(7): 526-536.
[2] 杨文申,郎林,阴秀丽,吴创之. 用低温加氢裂解法在AFI分子筛孔道中制备单壁碳纳米管的影响因素[J]. 材料研究学报, 2017, 31(6): 401-409.
[3] 王记中,车晓舟,吴姚莎,王刚,余红雅,曾德长. 热喷涂用纳米NiCrCoAlY-TiB2结构喂料的制备及其性能研究[J]. 材料研究学报, 2017, 31(6): 465-471.
[4] 仝博,李永清,朱锡,张焱冰. 复合材料夹芯圆柱壳的声辐射性能[J]. 材料研究学报, 2017, 31(6): 458-464.
[5] 马小强,朱晓云,龙晋明,曹梅. 玻璃粉对铜导体浆料烧结膜性能的影响[J]. 材料研究学报, 2017, 31(6): 472-480.
[6] 艾力江·吐尔地, 阿不都卡德尔·阿不都克尤木, 马木提江·吐尔逊, 陈沛. Co、N共掺杂介孔TiO2的制备和光催化性能[J]. 材料研究学报, 2017, 31(5): 381-386.
[7] 王亚超, 赵江平, 童媛媛, 丁建雄. LaCl3掺杂聚丙烯酰胺/硅灰基阻燃材料的制备及其阻燃机理[J]. 材料研究学报, 2017, 31(5): 387-393.
[8] 余为, 王亚东, 张任良, 李婷, 李慧剑. 碳纤维增强空心玻璃微珠/环氧树脂复合材料的力学性能[J]. 材料研究学报, 2017, 31(4): 300-308.
[9] 王正君, 周醒, 肖文强, 卞军, 陈代强. PP/石墨微片复合材料的制备和性能[J]. 材料研究学报, 2017, 31(4): 291-299.
[10] 王晓磊, 包秀坤, 关银燕, 徐舸. C/Co核壳亚微米复合物的吸波性能[J]. 材料研究学报, 2017, 31(4): 241-247.
[11] 王慧华, 葛彬, 苏丽娟, 屈天鹏, 王德永, 康振辉. (Co, N)/C氧电极催化剂的制备和性能[J]. 材料研究学报, 2017, 31(4): 267-273.
[12] 邓朝勇,张红波,尹健,熊翔,王培,孙淼,李万千. C/C-Cu复合材料的压缩性能及其破坏机理[J]. 材料研究学报, 2017, 31(3): 182-186.
[13] 王旭升,杨贵荣,宋文明,李健,马颖,郝远. Ni-Co/WC+G复合熔覆层的组织与摩擦磨损性能[J]. 材料研究学报, 2017, 31(3): 195-202.
[14] 金静,王昊,舒中俊,卢林刚. 两种马来酸酐接枝物对膨胀阻燃聚丙烯增韧共混复合体系性能的影响[J]. 材料研究学报, 2017, 31(3): 219-225.
[15] 于慧颖,赫文秀,张永强,安胜利,刘君红. Ni(OH)2/RGO复合材料的化学沉淀-回流法制备和放电性能[J]. 材料研究学报, 2017, 31(3): 226-232.