Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (5): 381-386    DOI: 10.11901/1005.3093.2016.388
  论文 本期目录 | 过刊浏览 |
Co、N共掺杂介孔TiO2的制备和光催化性能
艾力江·吐尔地1, 阿不都卡德尔·阿不都克尤木1(), 马木提江·吐尔逊1, 陈沛2
1 喀什大学化学与环境科学学院 新疆特色药食用植物资源化学自治区重点实验室 喀什 844007
2 陕西师范大学材料科学与工程学院 应用表面与胶体化学教育部重点实验室 西安 710062
Preparation and Photocatalytic Properties of Co and N Co-doped Mesoporous TiO2
Ailijiang TUERDI1, Abdukader ABDUKAYUM1(), Mamutjan TURSUN1, Pei CHEN2
1 Xinjiang Laboratory of Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science , Kashgar University, Kashgar 844007, China
2 Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Materials Science and Engineering,Shaanxi Normal University, Xi'an 710062, China
引用本文:

艾力江·吐尔地, 阿不都卡德尔·阿不都克尤木, 马木提江·吐尔逊, 陈沛. Co、N共掺杂介孔TiO2的制备和光催化性能[J]. 材料研究学报, 2017, 31(5): 381-386.
Ailijiang TUERDI, Abdukader ABDUKAYUM, Mamutjan TURSUN, Pei CHEN. Preparation and Photocatalytic Properties of Co and N Co-doped Mesoporous TiO2[J]. Chinese Journal of Materials Research, 2017, 31(5): 381-386.

全文: PDF(3915 KB)   HTML
摘要: 

以钛酸四丁酯为钛源,以三嵌段共聚物F127为模板剂,采用溶剂挥发诱导自组装法(EISA)制备Co、N共掺杂介孔TiO2,用XRD、TEM、SEM、XPS、N2吸附-脱附法和能谱等手段对材料的结构和形貌进行了表征。用紫外-可见吸收光谱法考察了催化剂对罗丹明B(RhB)和无色小分子2,4-二氯苯酚(DCP)的光催化降解效率。结果表明,样品具有较窄的孔径分布(3.65 nm),Co、N共掺杂介孔TiO2后TiO2的吸收范围扩展到可见光区,当用氙灯(模拟太阳光,500 W,λ>420 nm)光源对RhB和DCP进行光催化降解时,其光催化活性明显高于P25(纯TiO2)和Co掺杂介孔TiO2。对RhB和DCP分别光照120 min后,降解效率达到98.5%和66.3%以上。

关键词 复合材料介孔TiO2Co、N共掺杂光催化罗丹明B,2,4-二氯苯酚    
Abstract

The Co and N co-doped mesoporous TiO2 was successfully synthesized by an evaporation-induced self-assembly process, using tetrabutyl titanate as a Ti source and triblock copolymer F127 as a template. The crystal structure and morphology of the synthesized mesoporous TiO2 was characterized by means of XRD, TEM, SEM, EDX, XPS, and physical adsorption instrument. Photocatalytic activity of the photocatalyst was investigated through degradation of Rhodamine B (RhB) and 2, 4-dichlorophenol (DCP) by UV-visible absorption spectrometry. The results show that the Co and N co-doped mesoporous TiO2 presents a narrow pore size distribution (3.65 nm), and of which the light absorption band of photocatalyst was extended to visible light area after the Co and N co-doped mesoporous TiO2, with a photocatalytic activity is significantly higher than that of the P25(pure TiO2) and Co doped mesoporous TiO2. Under visible light illumination (500 W xenon lamp, λ>420 nm) for the Co and N co-doped mesoporous TiO2 photocatalysts exhibited excellent photocatalytic activity with, and the RhB and DCP degradation efficiencies y for RhB and DCP were as up to 98.3% and 66.3% respectively after irradiation 120 min.

Key wordscomposite    mesoporous TiO2    Co and N co-doped    photocatalysis    Rhodamine B,2,4-dichlorophenol
收稿日期: 2016-07-08     
基金资助:新疆维吾尔自治区高校科研计划(XJEDU2014I038)和喀什大学校内课题基金(15-2572)
作者简介:

作者简介 艾力江·吐尔地,男,1986年生,硕士,讲师

图1  Co、N共掺杂介孔TiO2的XRD图
图2  Co、N共掺杂介孔TiO2的TEM、HRTEM、SEM-EDS和映射图像
图3  Co、N共掺杂介孔TiO2的N2吸附/脱附和孔径分布
Sample Surface area (BET),
S/m2 g-1
Pore diameter, D/nm Pore volume (BJH),
V/cm3g-1
Co/N-TiO2 218.17 3.653 0.212
表1  Co、N共掺杂介孔TiO2的孔结构参数
图4  Co、N共掺杂介孔TiO2的XPS图谱
图5  P25、Co掺杂介孔TiO2和 Co、N共掺杂介孔TiO2的UV-vis漫反射吸收光谱和带隙图
图6  P25,Co掺杂介孔TiO2和Co、N共掺杂介孔TiO2的(a)RhB, (b)DCP降解效率图
[1] Gómez J M, Galán J, Rodríguez A, et al.Dye adsorption onto mesoporous materials: pH influence, kinetics and equilibrium in buffered and saline media[J]. J. Environ. Manage., 2014, 146: 355
[2] Dindar M H, Yaftian M R, Rostamnia S.Potential of functionalized SBA-15 mesoporous materials for decontamination of water solutions from Cr(VI): As(V) and Hg(II) ions[J]. J. Environ. Chem. Eng., 2015, 3: 986
[3] Li Y S, Shi J L. hollow-structured mesoporous materials: chemical synthesis, functionalization and applications[J]. Adv. Mater., 2014, 26: 3176
[4] Luo Z, Cetegen S A, Miao R, et al.Structure-property relationships of copper modified mesoporous TiO2 materials on alkyne homocoupling reactions[J]. J. Catal., 2016, 338: 94
[5] Hong K J, Kim S O.Atomic layer deposition assisted sacrificial template synthesis of mesoporous TiO2 electrode for high performance lithium ion battery anodes[J]. Energy Stor. Mater., 2015, 2: 27
[6] Hossain M K, Koirala A R, Akhtar U S, et al.First synthesis of highly crystalline, hexagonally ordered, uniformly mesoporous TiO2-B and its optical and photocatalytic properties[J]. Chem. Mater., 2015, 27: 6550
[7] Song M X, Bian L, Zou T L, et al.Surface ζ potential and photocatalytic activity of rare earths doped TiO2 [J]. J. Rare Earths, 2008, 26: 693
[8] Pelaez M, Nolen N T, Pillai S C, et al.A Review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Appl. Catal.: Environ., 2012, 125B: 331
[9] Wu Q, Li W, Wang D P, et al.Preparation and characterization of N-doped visible-light-responsive mesoporous TiO2 hollow spheres[J]. Appl. Surf. Sci., 2014, 299: 35
[10] Tian Y, Wang X F, Pan Y F. Simple synthesis of Ni-containing ordered mesoporous carbons and their adsorption/desorption of methylene orange [J]. J. Hazard. Mater., 2012, 213-214: 361
[11] Tu S H, Hu Y P, Zhang T, et al.Fabrication and photocatalytic activity for hydrogen evolution of graphene-CuO/TiO2 composite photocatalysts[J]. J. Function. Mater., 2016, 47(4): 11(涂盛辉, 胡亚平, 张婷等. 石墨烯-CuO/TiO2复合催化剂的合成及光催化制氢活性[J]. 功能材料, 2016, 47(4): 11)
[12] Reddy P A K, Srinivas B, Kala P, et al. Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide[J]. Mater. Res. Bull., 2011, 46: 1766
[13] Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269
[14] Zhang L J, Di L B, Li Y C, et al.Preparation and properties of Co-doped TiO2 with assistance of ionic liquid[J]. J. Inorg. Mater., 2014, 29: 801(张丽娟, 底兰波, 李燕春等. 离子液体中Co掺杂介孔TiO2可见光催化剂的制备及性能研究[J]. 无机材料学报, 2014, 29: 801)
[15] Zhang X J, Zhang G F, Jin H X, et al.First-principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt[J]. Acta Phys. Sin., 2013, 62(1): 17102(张学军, 张光富, 金辉霞等. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究[J]. 物理学报, 2013, 62(1): 17102)
[16] Liu B, Liu L M, Lang X F, et al.Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production[J]. Energ. Environ. Sci., 2014, 7: 2592
[17] Chang Y F, Liu X X, Cai A J, et al.Glycine-assisted synthesis of mesoporous TiO2 nanostructures with improved photocatalytic activity[J]. Ceram. Int., 2014, 40: 14765
[18] Wu Y Q, Lu G X, Li S B.The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B[J]. J. Phys. Chem., 2009, 113C: 9950
[19] Liu D, Lei J H, Guo L P, et al.Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine[J]. Carbon, 2011, 49: 2113
[20] Zhang M Y, Shao C L, Guo Z, et al.Hierarchical nanostructures of copper (II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties[J]. ACS Appl. Mater. Inter., 2011, 3: 369
[21] Zuo H, Sun J, Deng K, et al.Preparation and characterization of Bi3+-TiO2 and its photocatalytic activity[J]. Chem. Eng. Technol., 2007, 30: 577
[22] Sheng X, Daems N, Geboes B, et al. N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2 [J]. Appl. Catal.: Environ., 2015, 176-175B: 212
[23] Bagwasi S, Niu Y X, Nasir M, et al.The study of visible light active bismuth modified nitrogen doped titanium dioxide photocatlysts: role of bismuth[J]. Appl. Surf. Sci., 2013, 264: 139
[24] Wu G H, Zheng S K, Wu P F, et al.Electronic and optical properties analysis on Bi/N-codoped anatase TiO2 [J]. Solid State Commun., 2013, 163: 7
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.