Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 291-299    DOI: 10.11901/1005.3093.2016.347
  研究论文 本期目录 | 过刊浏览 |
PP/石墨微片复合材料的制备和性能
王正君1, 周醒1, 肖文强1, 卞军1(), 陈代强2
1 西华大学材料科学与工程学院 成都 610039
2 四川大学高分子科学与工程学院 成都 610065
Preparation and Properties of Composites PP/Graphite Sheets
Zhengjun WANG1, Xing ZHOU1, Wenqiang XIAO1, Jun BIAN1(), Daiqiang CHEN2
1 School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
2 College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
引用本文:

王正君, 周醒, 肖文强, 卞军, 陈代强. PP/石墨微片复合材料的制备和性能[J]. 材料研究学报, 2017, 31(4): 291-299.
Zhengjun WANG, Xing ZHOU, Wenqiang XIAO, Jun BIAN, Daiqiang CHEN. Preparation and Properties of Composites PP/Graphite Sheets[J]. Chinese Journal of Materials Research, 2017, 31(4): 291-299.

全文: PDF(3853 KB)   HTML
摘要: 

分别使用天然石墨用插层-还原法制备膨胀石墨微片(EG)、使用天然石墨用Hummer法制备氧化石墨烯(GO),再使用GO分别由热还原法制备石墨烯片(T-rGO)和化学还原法制备石墨烯片(C-rGO)。将上述三种产物作为填料与PP熔融共混制备出不同填料含量的PP/EG、PP/T-rGO和PP/C-rGO复合材料,用X-射线衍射(XRD)分析、热分析(DSC)、扫描电子显微镜(SEM)、热失重分析(TGA)、拉伸及冲击测试等手段对三种复合材料的结构和性能进行表征,研究了用不同方法制备的石墨微片对复合材料性能的影响。结果表明,当填料EG、T-rGO的含量为0.1%(质量分数,下同)时PP/EG、PP/T-rGO复合材料的拉伸强度达到32.2 MPa和33.5 MPa,分别比纯PP提高了7.2%和11.2%;冲击强度分别比纯PP提高了27.4%和19.6%。当填料C-rGO的含量为0.3%时PP/C-rGO复合材料的拉伸强度和冲击强度分别为37.3 MPa和5.8 kJ/m2,较纯PP提高了23.9%和27%。填料EG、T-rGO和C-rGO的加入使PP/石墨微片复合材料的熔融温度、结晶温度和结晶度比纯PP提高,当填料C-rGO的含量为0.1%时PP/C-rGO复合材料的熔融温度比纯PP提高了10.2℃,其结晶度提高了4.2%,这是石墨微片在复合材料中的“异相成核效应”诱导PP分子链的规整性排列引起的。当分别加入含量为0.1%的三种填料时PP/EG、PP/T-rGO和PP/C-rGO复合材料的最大热分解温度分别比纯PP提高了13.5℃、9.1℃和6.9℃,表明加入少量的石墨微片就能使PP的热稳定性明显改善。少量的填料能均匀的分散在基体中,但是加入过量的填料时出现团聚。

关键词 复合材料聚丙烯石墨微片力学性能热性能    
Abstract

As raw materials, expanded graphite (EG) sheets were prepared from natural graphite via intercalation-reduction method , while thermally reduced graphene sheets (T-rGO) and chemical reduced grapheme sheets (C-rGO) were prepared from graphene oxide (GO), which was synthesized by Hummers method. Then composites of polypropylene (PP)/graphite sheets were prepared with graphite sheets as fillers and PP as matrix by melt-blending method to produce composites of PP/EG, PP/T-rGO and PP/C-rGO respectively with different filler contents. The structure and properties of the three prepared composites of PP/graphite sheets are characterized by means of X-ray diffractormeter (XRD) , scanning electron microscope (SEM), thermal analysis (DSC), thermal gravimetric analysis (TGA), as well as tensile and impact tests. The results show that the tensile strength of composites of PP/EG and PP/T-rGO with 0.1% of EG or T-rGO, can reach 32.2 MPa and 33.5 MPa, which increased by 7.2% and 11.2%, respectively in comparison with that of the pure PP, while the impact strength of PP/EG and PP/T-rGO composites was improved by 27.4% and 19.6%. The tensile strength and impact strength of the composite PP/C-rGO with 0.3% C-rGO were 37.26 MPa and 37.26 kJ/m2, respectively, which increased by 23.9% and 27%, in comparison with those of the pure PP. The melting temperatures, crystalline temperatures and crystalline degree of PP/graphite sheet composites were higher than those of the pure PP. In contrast to the pure PP, the melting temperature and crystalline degree of PP/C-rGO composites with 0.1% C-rGO increased 10.2oC and 4.2%, respectively. It can be attributed to the "heterogeneous nucleation effect" of graphite sheets, which can induce the regular arrangement of PP molecular chains. The maximum decomposition temperatures of PP/EG, PP/T-rGO and PP/C-rGO composites with 0.1% of graphite sheet showed 13.5 oC, 9.1 oC and 6.9 oC respectively higher than that of the pure PP, indicating that the thermal stability of the composites can be improved by adding a small amount of graphite sheets. The fillers have been dispersed homogeneous in the matrix, but agglomeration appeared when excessive fillers were added.

Key wordscomposite    polypropylene    graphite sheet    mechanical properties    thermal properties
收稿日期: 2016-06-21     
ZTFLH:  TQ325.1+4  
基金资助:四川省教育厅青年基金(17ZB0422);国家级大学生创新创业训练计划(201510623033);四川省高校重点实验室开放研究基金(szjj2015-084,szjj2015-086);西华大学“青年学者培养计划”基金(01201404)
作者简介:

作者简介 王正君,男,1991年生,硕士生

图1  天然石墨、GO、EG、T-rGO和C-rGO的XRD图谱
图2  天然石墨、GO、EG、T-rGO和C-rGO的SEM照片
图3  纯PP和含不同石墨微片的PP复合材料的XRD图谱
图4  纯PP及PP/石墨微片复合材料的力学性能
图5  PP/石墨微片复合材料冲击断面的SEM照片
图6  复合材料的DSC曲线
Materials Tcp/℃ ΔHc/(Jg-1) Tmp/℃ ΔHm/(Jg-1) Xc/% ΔT/℃
PP 108.2 89.8 164.7 79.5 42.3 56.5
PP/EG (0.1%) 113.4 90.35 167.5 89.53 43.2 54.1
PP/T-rGO (0.1%) 113.5 94.13 167.5 77.14 45.0 54.0
PP/C-rGO (0.1%) 110.8 97.12 164.9 85.18 46.5 54.1
表1  典型的DSC测试结果
图7  复合材料的TGA曲线
Materials PP PP/EG (0.1%) PP/T-rGO (0.1%) PP/C-rGO(0.1%)
Ts/℃ 438.0 451.5 447.1 444.9
Tmax/℃ 454.8 454.3 463.6 462.7
表2  典型的热分解参数
[1] Teng Y H, Zhou C, Xue C G.Advances in research on polymer/nano CaCO3 composites[J]. Chem. Ind. Times, 2008, 22(3): 54(滕艳华, 周晨, 薛长国. 纳米CaCO3改性聚合物基复合材料研究进展[J]. 化工时刊, 2008, 22(3): 54)
[2] Huang Y, Guo Y K, Lu X C, et al.Progress in study of surface modification of nanosilica and its application[J]. Plastic Additives, 2006, (6): 1(黄勇, 郭亚昆, 路学成等. 纳米二氧化硅的表面改性及其应用进展[J]. 塑料助剂, 2006, (6): 1)
[3] Zhou L Y, Yin L S, Zhou K S, et al.Recent developments in silica research: Preparation, surface modification and application[J]. Mater. Rev., 2003, 17(11): 56(周良玉, 尹荔松, 周克省等. 白炭黑的制备、表面改性及应用研究进展[J]. 材料导报, 2003, 17(11): 56)
[4] Liu Y H, Cai X Y, Zhu Y C, et al.Research progress in SiC nanoparticles aggregation and dispersion[J]. J. Mater. Eng., 2013, (9): 84(刘亚虎, 蔡雪原, 朱延超等. 纳米碳化硅颗粒的团聚及分散的研究进展[J]. 材料工程, 2013, (9): 84)
[5] Huang Y D, Cao H L, Shao L, et al.Study on interface properties of carbon fibers reinforced composites[J]. Aerosp. Mater. Technol., 2002, 32(1): 19(黄玉东, 曹海琳, 邵路等. 碳纤维复合材料界面性能研究[J]. 宇航材料工艺, 2002, 32(1): 19)
[6] Chen S B, Wang Q H, Pei X Q, et al.Preparation and Properties of Mill glass fiber/mica filled EP/PU interpenetrating polymer network composites[J]. Polym. Mater. Sci. Eng., 2010, 26(11): 122(陈守兵, 王齐华, 裴先强等. 玻璃纤维/云母改性环氧树脂/聚氨酯互穿网络聚合物的制备与性能[J]. 高分子材料科学与工程, 2010, 26(11): 122)
[7] Zhou Q F, Lu X C, Wang P.Property modifications of polyamide and their progress[J]. Plast. Sci. Technol., 2005, (5): 59(周庆丰, 路学成, 王鹏. 聚酰胺的高性能化及改性进展[J]. 塑料科技, 2005, (5): 59)
[8] Yu M H, Zhao S P, Teng C Q, et al.Study on the interface of composites reinforced with HSPE the role of multifunctional group in inerface[J]. Fiber Comp., 2000, 17(1): 15(余木火, 赵世平, 滕翠青等. 高强聚乙烯纤维增强复合材料界面的研究: 多官能团化合物在界面中的化学键合作用[J]. 纤维复合材料, 2000, 17(1): 15)
[9] Xu F L, Fang X, Xu C Y.Dispersion study on polymer compounds filled with mineral fillers[J]. Geol. Zhejiang, 1997, 13(1): 78(许峰林, 方旋, 徐传云. 矿物填充聚合物的分散性研究[J]. 浙江国土资源, 1997, 13(1): 78)
[10] Peng X, Ge G S, Zheng L X.Surface modification of fillers used in polymers[J]. China Powd. Sci. Technol., 1997, 3(2): 33(彭晓, 盖国胜, 郑龙熙. 聚合物复合材料填充剂的改性[J]. 粉体技术, 1997, 3(2): 33)
[11] Ying Z R, Liu H S, Chen R K, et al.Progress in preparation methods of polymer/graphite conductive nanocomposites[J]. China Plastic, 2008, 22(11): 9(应宗荣, 刘海生, 陈仁康, 等. 聚合物/石墨导电纳米复合材料制备方法进展[J]. 中国塑料, 2008, 22(11): 9)
[12] Quan C Z, Shen J W, Chen X M.Preparation and properties of polypropylene/graphite electrically conductive nanocomposites[J]. Acta Polymer. Sin., 2003, 1: 831(全成子, 沈经纬, 陈晓梅. 聚丙烯/石墨导电纳米复合材料的制备与性能[J]. 高分子学报, 2003, 1: 831)
[13] Shen W C.Modernization of graphite industry and furthur processing of natural graphite[J]. China Non metall. Miner. Ind., 2005, (6): 3(沈万慈. 石墨产业的现代化与天然石墨的精细加工[J]. 中国非金属矿工业导刊, 2005, (6): 3)
[14] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[15] Huang Y J, Qin Y W, Zhou H, et al.Polypropylene/graphene oxide nano-composites prepared by in situ-ziegler, natta polymerization[J]. Chem. Mater., 2010, 22: 4096
[16] Hsiao M C, Liao S H, Lin Y F, et al.Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale, 2011, 3: 1516
[17] He F X, Bian J, Lin H L, et al.Preparation and characterization of functionalized nano-graphene sheet/PP-PP-g-MAH composites[J]. Acta Mater. Comp. Sin., 2015, 32: 47(何飞雄, 卞军, 蔺海兰等. 功能化纳米石墨烯片/PP-PP-g-MAH 复合材料的制备与表征[J]. 复合材料学报, 2015, 32: 47)
[18] Wu Z, Zhang D W, Huang R H, et al.Preparation and affecting factors of expandable graphite[J]. J. Harbin Univ. Sci. Technol., 2007, 12(2): 128(吴泽, 张达威, 黄荣华等. 可膨胀石墨的制备及影响因素[J]. 哈尔滨理工大学学报, 2007, 12(2): 128)
[19] Hummers W S Jr, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958, 80: 1339
[20] Gao J, Liu F, Liu Y L, et al.Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chem. Mater., 2010, 22: 2213
[21] Xie G L, Zhang P, Gong S G, et al.Macro-micro stress concentration analysys of strengthened and toughened polymer-matrix composites[J]. Eng. Mechan., 2005, 22(3): 228(谢桂兰, 张平, 龚曙光等. 增强增韧聚合物基复合材料宏细观应力集中的分析与研究[J]. 工程力学, 2005, 22(3): 228)
[22] Li S Y, Yang W, Shi W, et al.Mechanical properties and crystallization behavior of PP/wood flour composites[J]. China Plastic. Ind., 2005, 33(S1): 146(李思远, 杨伟, 史炜等. 木粉/聚丙烯复合材料力学性能及结晶行为研究[J]. 塑料工业, 2005, 33(S1): 146)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.