Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 226-232    DOI: 10.11901/1005.3093.2016.322
  研究论文 本期目录 | 过刊浏览 |
Ni(OH)2/RGO复合材料的化学沉淀-回流法制备和放电性能
于慧颖1,赫文秀1(),张永强1,安胜利1,刘君红2
1 内蒙古科技大学化学与化工学院 包头 014010
2 包头职业技术学院 包头 014010
Chemical Precipitation-reflux Synthesis and Discharge Performance of Composite of Nickel Hydroxide /Reduced Graphene Oxide
Huiying YU1,Wenxiu HE1(),Yongqiang ZHANG1,Shengli AN1,Junhong LIU2
1 School of Chemistry and Chemistry Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
2 Baotou Professional Technology College, Baotou 014010, China
引用本文:

于慧颖,赫文秀,张永强,安胜利,刘君红. Ni(OH)2/RGO复合材料的化学沉淀-回流法制备和放电性能[J]. 材料研究学报, 2017, 31(3): 226-232.
Huiying YU, Wenxiu HE, Yongqiang ZHANG, Shengli AN, Junhong LIU. Chemical Precipitation-reflux Synthesis and Discharge Performance of Composite of Nickel Hydroxide /Reduced Graphene Oxide[J]. Chinese Journal of Materials Research, 2017, 31(3): 226-232.

全文: PDF(1403 KB)   HTML
摘要: 

以氧化石墨(GO)和NiSO46H2O为前驱体,氨水为沉淀剂,用化学沉淀-回流法制备Ni(OH)2/还原氧化石墨烯(RGO)复合材料,用XRD、SEM表征材料的结构和表面微观形貌,用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)测试电极材料的电化学性能,研究了GO:Ni(OH)2质量比和氨水浓度对复合材料结构、形貌和电化学性能的影响。结果表明:所制备的β-Ni(OH)2/RGO复合材料为Ni(OH)2纳米片与RGO片相互插层的结构,当氨水的浓度为3 mol/L,GO:Ni(OH)2=1:8(质量比)时复合电极材料在0.2C的放电比容量高达334.9 mAh/g,5C的放电比容量为260.2 mAh/g,保持在β-Ni(OH)2理论比容量的90%,表现出良好的倍率性能和循环性能。

关键词 复合材料化学沉淀-回流法β-Ni(OH)2还原氧化石墨烯电化学性能    
Abstract

Composite of nickel hydroxide/reduced graphene oxide (Ni(OH)2/RGO) was synthesized by facile chemical precipitation-reflux method with graphite oxide and nickel sulfate hexahydrate as precursors and ammonium hydroxide as the precipitator. The surface morphology and microscopic structures of the composite were characterized by X-ray diffraction (XRD) and scan electron microscopy (SEM). The electrochemical performance of the composite was assessed by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The influence of different mass ratio of graphite oxide to nickel hydroxide (GO: Ni(OH)2) and the concentration of ammonium hydroxide on structures, morphologies, and electrochemical properties of the composite was investigated. The results show that the synthesized composite of β-Ni(OH)2/RGO has mutually inserted structure. The composite of β-Ni(OH)2/RGO exhibits high electrochemical performance of 334.9 mAh/g at 0.2C rate and 260.2 mAh/g at 5C rate when the concentration of ammonium hydroxide is 3 mol/L and the mass ratio of GO:Ni(OH)2 is 1:8, while the product can still maintain 90% of the theoretical specific capacity of β-Ni(OH)2. It displays that this electrode material has excellent electrochemical performance with excellent rate capability.

Key wordscomposite    chemical precipitation-reflux method    β-Ni(OH)2    reduced graphene oxide    electrochemical performance
收稿日期: 2016-06-12     
基金资助:内蒙古自然科学基金(2014MS0523、2015MS0208),内蒙古自治区高等学校青年科技英才计划-青年科技领军人才A类项目(NJYT-14-A08)和包头市科技计划(2015C2004-1)资助项目
图1  GN8(5M)、GN10(3M)和GN8(3M)复合材料的XRD图谱
图2  Ni(OH)2、 GN8(5M)、 GN10(3M)和GN8(3M)复合材料的FE-SEM图
图3  Ni(OH)2、GN8(5M)、GN10(3M)和GN8(3M)电极材料在不同扫描速率下的CV曲线
图4  Ni(OH)2和Ni(OH)2/RGO电极材料在0.2C倍率下的充放电曲线
图5  Ni(OH)2和Ni(OH)2/RGO电极材料在不同倍率下的放电比容量曲线
图6  Ni(OH)2和Ni(OH)2/RGO电极材料在不同倍率下的循环稳定性曲线
图7  Ni(OH)2和Ni(OH)2/RGO电极材料的电化学阻抗图谱及其高频区的放大图
[1] Fang Q, Xie S Y, Cheng Y, et al.Effects of nanoscale conductive additives on high temperature and high power performance of nickel electrodes[J]. Chin. J. Rare Metals, 2009, 33: 376
[1] (方庆, 谢守韫, 成艳等. 纳米导电剂对镍电极高温/高功率性能的影响[J]. 稀有金属, 2009, 33: 376)
[2] Tang Y G.Ni/MH Batteries[M]. Beijing: Chemical Industry Press, 2007: 100
[2] (唐有根. 镍氢电池[M]. 北京: 化学工业出版社, 2007: 100)
[3] Liang Y Y, Wu D Q, Feng X L, et al.Dispersion of graphene sheets in organic solvent supported by ionic interactions[J]. Adv. Mater., 2009, 21: 1679
[4] Wu Z, Huang X L, Wang Z L, et al.Electrostatic induced stretch growth of homogeneous β-Ni(OH)2 on Graphene with enhanced high-rate cycling for Supercapacitors[J]. Sci. Rep., 2014, 4: 3669
[5] Wang L N, Chen H Y, Cai F, et al.Hierarchical carbon nanotube/α-Ni(OH)2 nanosheet composite paper with enhanced electrochemical capacitance[J]. Mater. Let., 2014, 115: 168
[6] Zhang J L, Liu H D, Shi P, et al.Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite[J]. J. Power Sour., 2014, 267: 356
[7] Ji J Y, Zhang L L, Ji H X, et al.Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS Nano, 2013, 7: 6237
[8] Yan J, Fan Z J, Sun W, et al.Advanced asymmetric Supercapacitors based on Ni(OH)2 /Graphene and porous Graphene electrodes with high energy density[J]. Adv. Funct. Mater., 2012, 22: 2632
[9] Kim Y, Cho E S, Park S J, et al.One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior[J]. J. Ind. Eng. Chem., 2016, 33: 110
[10] Zhu J W, Chen S, Zhou H, et al.Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance[J]. Nano Res., 2012, 5: 11
[11] Xie J F, Sun X, Zhang N, et al.Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film Supercapacitors with high electrochemical performance[J]. Nano Energy, 2013, 2: 65
[12] Huang Z N, Kou S Z, Jin D D, et al.Performance of Ni(OH)2/reduced graphene oxides composites for supercapacitors[J]. J. Funct. Mater., 2015, 46: 5084
[12] (黄振楠, 寇生中, 金东东等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料, 2015, 46: 5084)
[13] Fang D L, Chen Z D, Liu X, et al.Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors[J]. Electrochim. Acta, 2012, 81: 321
[14] Fu W D, Gong Y C, Wang M, et al.β-Ni(OH)2 nanosheets grown on graphene as advanced electrochemical pseudocapacitor materials with improved rate capability and cycle performance[J]. Mater. Let., 2014, 134: 107
[15] HummersJr W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958, 80: 1339
[16] Sheng K X, Xu Y X, Li C, et al.High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Mater., 2011, 26: 9
[17] Li Z Q, Lu C J, Xia Z P, et al.X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon, 2007, 45: 1686
[18] Kim J, Kim Y, Park S J, et al.Preparation and electrochemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes[J]. J. Ind. Eng. Chem., 2016, 36: 139
[19] Watanabe K, Kikuoka T, Kumagai N.Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries[J]. J. Appl. Electrochem., 1995, 25: 219
[20] Nan J M, Tang Z Y, Liu J H, et al.XRD and Raman spectrometric characterization on Ni(OH)2 electrode materials[J]. Chin. J. Appl. Chem., 2001, 18: 108
[20] (南俊民, 唐致远, 刘建华等. Ni(OH)2电极材料的XRD和Raman光谱表征[J]. 应用化学, 2001, 18: 108)
[21] Xu M W, Bao S J, Li H L.Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J]. J. Solid State Electrochem., 2007, 11: 372
[22] Chen X A, Chen X H, Zhang F Q, et al.One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor[J]. J. Power Sour., 2013, 243: 555
[23] Lei H.Synthesis and property studies of high-capacity Ni-MH battery cathode materials [D]. Beijing: Beijing Nonferrous Metal Research Institute, 2014
[23] (雷浩. 高容量镍氢电池正极合成与性能研究 [D]. 北京: 北京有色金属研究总院, 2014)
[24] Yang Y.The preparation of Ni(OH)2 mixing with graphene oxide and studying the electrical performance [D]. Xinxiang: Henan Normal University, 2012
[24] (杨祎. 氢氧化镍掺杂氧化石墨烯的制备以及电性能的研究 [D]. 新乡: 河南师范大学, 2012)
[25] Yang W L, Gao Z, Wang J, et al.Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode[J]. Electrochim. Acta, 2012, 69: 112
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.