Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 81-87    DOI: 10.11901/1005.3093.2016.291
  本期目录 | 过刊浏览 |
低温低压电弧等离子体渗氮处理316不锈钢的耐腐蚀性能
杨文进1,2,赵彦辉2(),沈明礼2,刘占奇2,肖金泉2,宫骏2,于宝海2,孙超2
1 中国科学技术大学材料科学与工程学院 合肥 230027
2 中国科学院金属研究所 沈阳 110016
Corrosion Resistance of 316 Stainless Steel after Low-temperature Low-pressure Arc Plasma Nitriding
Wenjin YANG1,2,Yanhui ZHAO2(),Mingli SHEN2,Zhanqi LIU2,Jinquan XIAO2,Jun GONG2,Baohai YU2,Chao SUN2
1 School of Materials Science and Engineering, University of Science and Technology of China, Anhui 230027, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

杨文进,赵彦辉,沈明礼,刘占奇,肖金泉,宫骏,于宝海,孙超. 低温低压电弧等离子体渗氮处理316不锈钢的耐腐蚀性能[J]. 材料研究学报, 2017, 31(2): 81-87.
Wenjin YANG, Yanhui ZHAO, Mingli SHEN, Zhanqi LIU, Jinquan XIAO, Jun GONG, Baohai YU, Chao SUN. Corrosion Resistance of 316 Stainless Steel after Low-temperature Low-pressure Arc Plasma Nitriding[J]. Chinese Journal of Materials Research, 2017, 31(2): 81-87.

全文: PDF(3998 KB)   HTML
摘要: 

在低温下对316奥氏体不锈钢进行低压电弧等离子体渗氮处理,研究了渗氮处理对不锈钢耐腐蚀性能的影响。结果表明:渗氮层有两个子层,由纳米晶扩张奥氏体和少量的CrN化合物组成的外表层和单一结构的扩张奥氏体内层。由于低压电弧等离子体浓度高,在400℃渗氮1 h得到的渗氮层厚度达到15 μm,表现出很高的渗氮速率。纳米晶外表层是渗氮不锈钢耐腐蚀性能的关键,促进了钝化膜的生成,渗氮后试样表面形成的钝化膜厚度达到27 nm,比原始不锈钢钝化膜的2倍还多。渗氮不锈钢试样的腐蚀电流(3.55×10-8 A/cm2)比基材的腐蚀电流(1.99×10-7 A/cm2)降低一个数量级,表明渗氮后试样的耐腐蚀性能提高了。

关键词 材料失效与保护低压电弧等离子体渗氮纳米晶扩张奥氏体渗氮速率耐腐蚀性能    
Abstract

Low-pressure arc plasma nitriding is a novel rapid plasma nitriding process which can significantly enhance wear and corrosion resistance of austenite stainless steels. In this study, low temperature (~ 400℃) nitriding was applied to AISI 316 austenitic stainless steel (316 SS). A nitriding layer of 15 μm thickness was obtained just after 1 h processing, which is composed of an outer thin sublayer of nanocrystalline expanded austenite (nano-γN) with a trace of Cr nitrides and an inner thick coarse-grained expanded austenite (γN) sublayer. The thin surface nanolayer plays the key role in corrosion resistance of the nitrided layer, which promotes the formation of passive film. And the thickness of the passive film formed on the surface of the nitrided steel is 27 nm, which is two times over that on the bare 316 stainless steel. The corrosion current of nitrided steel is 3.55×10-8 A/cm2 in 3.5% NaCl solution, c.a. one order of magnitude lower than that of the untreated 316 austenite stainless steel (1.99×10-7 A/cm2), which indicated that the nitrided layer had a lower corrosion rate. The pitting corrosion potential was not detected via electrochemical polarization experiments, exhibiting a better pitting corrosion resistance of the nitrided steel.

Key wordsmaterials failure and protection    low-pressure arc plasma nitriding    nano-crystalline expanded austenite    nitriding kinetics    corrosion resistance
收稿日期: 2016-05-26     
基金资助:国家自然科学基金 (51171197)
图1  低压电弧等离子体渗氮装置示意图
图2  渗氮样品的截面SEM像和氮元素深度分布曲线
图3  渗氮及未渗氮样品的XRD图谱
图4  渗氮样品最外表层和次表层的TEM像和SAED谱
图5  不同样品在3.5% NaCl 溶液中浸泡48 h后的表面形貌
Samples Ecorr (mV) Icorr
(A/cm2)
Ep
(mV)
Substrate -155.55 1.99×10-7 0.3~0.6
Nitrided layer -172.15 3.55×10-8
Nitrided layer without
nano-sublayer
-251.84 5.21×10-7 0.5~0.6
表1  试样的腐蚀电压、腐蚀电流和点蚀电位
图6  样品的动电位极化曲线图
图7  渗氮层的元素深度分布
[1] Zhang Z L, Bell T.Structure and corrosion resistance of plasma nitrided stainless steel[J]. Surf. Eng., 1985, 1(2): 131
[2] Lei M K, Zhu X M, Yuan L J, et al.Corrosion resistance of modified surface layer on austenitic stainless steel Ⅰ. pitting corrosion and general corrosion properties[J]. Acta. Metall. Sin., 1999, 35(10): 1081
[2] (雷明凯, 朱雪梅, 袁力江等. 奥氏体不锈钢表面改性层耐蚀性实验研究Ⅰ. 孔蚀和均匀腐蚀性能[J]. 金属学报, 1999, 35(10): 1081
[3] Wang L, Xu X L, Yu Z W, et al.Low pressure plasma arc source ion nitriding of austenitic stainless steel[J]. Sur. Coat. Technol., 2000, 124(2-3): 93
[4] Lin Y H, Lan W C, Ou K L, et al.Hemocompatibility evaluation of plasma-nitrided austenitic stainless steels at low temperature[J]. Sur. Coat. Technol., 2012, 206(23): 4785
[5] Li C X, Bell T.Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel[J] Wear, 2004, 256(11-12): 1144
[6] Lieberman M A, Lichtenberg A J.Principles of Plasma Discharges and Materials Processing[M]. New York: Wiley Interscience, 1994
[7] Randall N X, Renevier N, Michel H, et al.Correlation between processing parameters and mechanical properties as a function of substrate polarisation and depth in a nitrided 316 L stainless steel using nanoindentation and scanning force microscopy[J]. Vacuum, 1997, 48(10): 849
[8] Goncharenko I M, Grigoriev S V, Lopatin I V, et al. Surface modification of steels by comples diffusion saturation in low pressure arc discharge [J]. Sur. Coat. Technol., 2003, 169-170: 419
[9] Zhao Y H, Yu B H, Dong L M, et al.Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel[J]. Sur. Coat. Technol., 2012, 210: 90
[10] Gorokhovsky V, Belluz P D B, Ion treatment by low pressure arc plasma immersion surface engineering processes[J]. Sur. Coat. Technol., 2013, 215: 431
[11] Czerwiec T, Michel H, Bergmann E.Low-pressure, high-density plasma nitriding: mechanisms, technology and results [J]. Sur. Coat. Technol., 1998, 108-109: 182
[12] Rudenja S, Pan J, Wallinder I O, et al.Enhanced passivity of austenitic AISI 304 stainless steel by low-temperature ion nitriding[J]. J. Vac. Sci. Technol. A, 2001, 19(4): 1425
[13] Wang L.Surface modification of AISI 304 austenitic stainless steel by plasma nitriding[J]. Appl. Surf .Sci., 2003 211(1-4): 308
[14] Yang W J, Zhang M, Zhao Y H, et al.Enhancement of mechanical property and corrosion resistance of 316L stainless steels by low temperature arc plasma nitriding[J]. Sur. Coat. Technol., 2016, 298: 64
[15] Li N, Li Y, Wang S G, et al.Corrosion behavior of nanocrystallized bulk 304 stainless steel Ⅰ. The research on anti-chloride ion attack of the passive film[J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 80
[15] (李楠, 李瑛, 王胜刚等. 轧制纳米块体304不锈钢腐蚀行为的研究Ⅰ. 钝化膜耐氯离子侵蚀能力[J].中国腐蚀与防护学报, 2007, 27(2): 80
[16] Borgioli F, Galvanetto E, Bacci T.Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels[J] Vacuum, 2016, 127: 51
[17] Rong D S, Jiang Y, Gong J M.Experimental research and thermodynamic simulation of low temperature colossal carburization of austenitic stainless steel[J]. Acta. Metall. Sin., 2015, 51(12): 1516
[17] (荣冬松, 姜勇, 巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究[J]. 金属学报, 2015, 51(12): 1516
[1] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.