Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 96-101    DOI: 10.11901/1005.3093.2016.260
  本期目录 | 过刊浏览 |
酸处理对干法纺甲纶聚酰亚胺纤维增强体性能的影响
陈乐1,2,龙柱1(),王士华3,李志强3,郭帅3,王斌2
1 江南大学生态纺织教育部重点实验室 无锡 214122
2 华南理工大学制浆造纸工程国家重点实验室 广州 510640
3 连云港市工业投资集团有限公司 连云港 222002
Influence of Acid Treatment on Properties of Dry-spinning Jialun Polyimide Fibers Reinforcement
Le CHEN1,2,Zhu LONG1(),Shihua WANG3,Zhiqiang LI3,Shuai GUO3,Bin WANG2
1 Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
2 State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
3 Lianyungang Industry Investment Group Co., Ltd, Lianyungang 222002, China
引用本文:

陈乐,龙柱,王士华,李志强,郭帅,王斌. 酸处理对干法纺甲纶聚酰亚胺纤维增强体性能的影响[J]. 材料研究学报, 2017, 31(2): 96-101.
Le CHEN, Zhu LONG, Shihua WANG, Zhiqiang LI, Shuai GUO, Bin WANG. Influence of Acid Treatment on Properties of Dry-spinning Jialun Polyimide Fibers Reinforcement[J]. Chinese Journal of Materials Research, 2017, 31(2): 96-101.

全文: PDF(2065 KB)   HTML
摘要: 

以HCl为湿化学处理液,研究了HCl处理对聚酰亚胺纤维增强体浸润性能、微观形貌、热性能、细度及力学性能、化学结构和微观聚集态结构的影响,在分析纤维浸润性能改善的同时也分析了其他性能及结构的变化。结果表明:HCl处理后纤维表面凹凸不平,粗糙度增加,局部发生了刻蚀,引入了活性基团,表面能提高,浸润性能改善。且随着HCl浓度或温度的提高、处理时间的延长浸润性能改善趋势加快,热性能保持较好,细度及力学性能略有降低。在H+的作用下纤维酰亚胺环少量开环水解为聚酰胺酸,化学结构变化不明显,微观聚集态结构发生改变,非结晶区比例上升。HCl处理能有效地对纤维表面进行功能化改性。

关键词 复合材料酸处理聚酰亚胺纤维浸润性能性能及结构    
Abstract

The effect of chemical treatment with HCl solution on the wetting properties, surface morphology, thermal properties, fineness and mechanical properties, chemical structure and microscopic state of aggregation structure was investigated for polyimide fiber-reinforcements The results show that after HCl treatment, the fiber surface exhibits characters of etching with increased surface roughness, higher surface free energy, and enhanced wetability, while certain reactive group is introduced onto the surface; With the increase of HCl concentration, the rise of temperature as well as the the increase of processing time, the wetability was sharply enhanced, the fineness and mechanical properties decrease slightly while the thermal property keeps preferably within a certain range. The existence of H+ in the treatment solution could result in that a few of imide rings on the fiber was broken and then hydrolyzed to polyamide acid, thereby its microscopic state of aggregation structure was changed and the ratio of amorphous region was enhanced, therewith its chemical structure does not change significantly. In general, HCl treatment is feasible for modifying the polyimide fiber surface.

Key wordscomposites    acid treatment    polyimide fibers    wetting properties    properties and structure
收稿日期: 2016-05-16     
基金资助:国家自然科学基金(31270633)、制浆造纸工程国家重点实验室开放基金(201512)、连云港“555工程”计划(No;2015-13)、杭州钱江特聘专家计划以及江苏高校优势学科建设工程
图1  未处理和在不同条件下HCl处理的纤维的SEM照片
Temperature/℃ Time/h 7.2% 10.8%
Height/cm Height/cm
30 1 6.6 6.8
2 7.1 7.3
3 7.3 7.5
60 1 7.0 7.2
2 7.4 7.7
3 7.6 7.8
90 1 7.2 7.4
2 7.5 7.6
3 7.8 8.0
表1  HCl处理纤维浸润性能测试结果
图2  HCl处理纤维的TG与DTG曲线
Temperature/℃ Time/h 7.2% 10.8%
Fineness/μm Strength/cN/dtex Elongation/% Fineness/μm Strength/cN/dtex Elongation/%
30 1 21.02 4.14 14.11 20.12 4.12 14.20
2 19.69 4.08 13.83 19.28 4.05 13.65
3 18.38 4.00 13.20 18.36 3.97 13.16
60 1 18.38 4.01 13.43 18.87 3.96 13.23
2 18.36 3.93 13.24 18.68 3.88 12.98
3 18.22 3.85 12.78 18.68 3.81 12.65
90 1 17.69 3.99 13.38 19.72 3.91 13.07
2 17.81 3.91 12.86 19.45 3.80 12.63
3 18.03 3.81 12.82 17.26 3.75 12.53
表2  HCl处理纤维细度及力学性能测试结果
Temperature/℃ Time/h 7.2% 10.8%
Strength loss/% Elongation loss/% Strength loss/% Elongation loss/%
30 1 10.58 8.91 11.02 8.33
2 11.88 10.72 12.53 11.88
3 13.61 14.78 14.25 15.04
60 1 13.39 13.30 14.47 14.59
2 15.12 14.53 16.20 16.20
3 16.85 17.50 17.71 18.33
90 1 13.82 13.62 15.55 15.62
2 15.55 16.98 17.93 18.46
3 17.71 17.24 19.01 19.11
表3  HCl处理纤维细度及力学性能变化情况
图3  HCl处理纤维的FT-IR图谱
图4  聚酰亚胺纤维在酸碱条件下的水解过程
图5  HCl处理纤维的XRD图谱
[1] G. Deng, Q. H. Zhang.Simulation of dry-spinning process of polyimide fibers[J]. J. Appl. Polym. Sci., 2009, 113(5): 3059
[2] J. Dong, Q. H. Zhang.Hydrogen-Bonding Interactions and Molecular Packing in Polyimide Fibers Containing Benzimidazole Units[J]. Macromol. Mater. Eng., 2014, 299(10): 1170
[3] I. Butnaru, D. Serbezeanu.Physical and thermal properties of poly(ethylene terephthalate) fabric coated with electrospun polyimide fibers[J]. High. Perform. Polym, 2015, 27(5): 616
[4] Y. M. Zhang, L. Ionov.Actuating Porous Polyimide Films[J]. ACS. Appl. Mater. Inter., 2014, 6(13): 10072
[5] A. A. Harchenko, D. I. Brinkevich.Modification of the subsurface layers of polyimide films upon boron-ion implantation[J]. J. Surf. Investig-X-Ra., 2015, 9(1): 87
[6] Liu Y, Liang G Z.Surface modification and interface properties of enzymemediated grafting kevlar fibers[J]. Chinese Journal of Materials Research, 2015, 29(10): 794
[6] (刘洋,梁国正.生物酶催化接枝芳纶纤维和复合材料的界面性能[J]. 材料研究学报, 2015, 29(10): 794)
[7] Ma X L, Ao Y H, Xiao L H, et al.Effect of surface modification of carbon fiber on friction properties of carbon fiber/phenolic resin matrix composite[J]., Chinese Journal of Materials Research, 2015, 29(2): 101
[7] (马小龙, 敖玉辉, 肖凌寒等. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响[J].材料研究学报, 2015, 29(2): 101)
[8] Yi Z B, Feng L B, Hao X Z, et al.Effect of surface treatment on properties of carbon fiber and reinforced composites[J]. Chinese Journal of Materials Research, 2015, 29(1): 67
[8] (易增博, 冯利邦, 郝相忠等. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1): 67)
[9] M. Kim, H. Mi.Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film[J]. Appl. Phys. Lett., 2015, 106(21): 1
[10] Que Z B, Wang X D, Huang P, et al.Surface modification of polyimide film by acid-base treatment[J]. Polymer Materials Science and Engineering, 2010, 26(5): 39
[10] (阙正波, 王晓东,黄培等. 酸碱处理对聚酰亚胺薄膜的表面改性[J]. 高分子材料科学与工程, 2010, 26(5): 39)
[11] Z. Q. Han, S. L. Qi, W. Liu, et al.Surface-modified polyimide fiber-filled ethylenepropylenediene monomer insulations for a solid rocket motor: processing, morphology, and properties[J]. Ind. Eng. Chem. Res., 2013, 52(3): 1284
[12] G. Deng, Q. H. Zhang.Simulation of polyimide fibers with trilobal cross section produced by dry-spinning technology[J]. Polym. Eng. Sci., 2015, 55(9): 2148
[13] J. J. Chang, D. Z. Wu.Structures and properties of polyimide fibers containing ether units[J]. J. Mater. Sci., 2015, 50(11): 4104
[14] I. Stoica, A. I. Barzic.Surface topography effect on fibroblasts population on epiclon-based polyimide films[J]. J. Adhes. Sci. Technol., 2015, 29(20): 2190
[15] H. B. Xiang, Z. Huang.Structure and properties of polyimide (BTDA-TDI/MDI co-polyimide) fibers obtained by wet-spinning[J]. Macromol. Res., 2011, 19(7): 645
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.