Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 168-174    DOI: 10.11901/1005.3093.2016.237
  研究论文 本期目录 | 过刊浏览 |
化学气相沉积ZrB2涂层的微观形貌及晶粒择优生长
张军,张磊,李国栋(),熊翔
中南大学 粉末冶金国家重点实验室 长沙 410083
Micro-morphology and Preferential Growth of ZrB2 Coating Prepared by Chemical Vapor Deposition
Jun ZHANG,Lei ZHANG,Guodong LI(),Xiang XIONG
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

张军,张磊,李国栋,熊翔. 化学气相沉积ZrB2涂层的微观形貌及晶粒择优生长[J]. 材料研究学报, 2017, 31(3): 168-174.
Jun ZHANG, Lei ZHANG, Guodong LI, Xiang XIONG. Micro-morphology and Preferential Growth of ZrB2 Coating Prepared by Chemical Vapor Deposition[J]. Chinese Journal of Materials Research, 2017, 31(3): 168-174.

全文: PDF(1040 KB)   HTML
摘要: 

以ZrCl4-BCl3-H2-Ar作为化学气相沉积反应体系,在不同温度下化学气相沉积ZrB2涂层,用 X 射线衍射和扫描电子显微镜(SEM)表征了涂层的微观形貌和晶粒择优生长。结果表明:在石墨基体表面ZrB2涂层的形核模式为岛状生长,小岛不断生成和合并以及晶粒的生长使靠近石墨基体表面的涂层含有大量孔洞,并形成细晶区。在1300~1600℃沉积的初期,ZrB2涂层中一次晶粒融合为二次晶粒,表现为<111>方向的择优生长。随着沉积的进行ZrB2涂层的形貌从二次晶粒生长为板块状晶粒,板块状晶粒进一步生长向金字塔形貌转变,涂层内部生长为致密柱状晶,晶粒的择优取向从<111>向<100>转变;当金字塔形貌的晶粒棱边发生钝化时涂层内部的晶粒向等轴晶转变,晶粒的择优取向由<100>方向转变为<101>方向。

关键词 材料表面与界面ZrB2涂层化学气相沉积微观形貌取向    
Abstract

ZrB2 coating was deposited on graphite by chemical vapor deposition with ZrCl4-BCl3-H2-Ar as reaction ingredient at different temperatures, which then was characterized by means of X-ray diffractometer and scanning electron microscopy (SEM). The results show that the formation of ZrB2 coating on graphite follows a mode of nucleation of ZrB2 first, which grow as islets and then further grow and merger each other forming a complete film. The growing and merging of islets resulted in that a large number of holes existed in the coating side near the boundary ZrB2 coating / graphite substrate, and thereby formed the fine grain zone there. In the initial deposition stage at 1300℃ to 1600℃, the primary grains of ZrB2 coalesced to become secondary grains with preferential orientation <111>. As the deposition processed, the secondary grains changed to the plate-shaped grains. The plate-shaped grains transformed into the pyramid shaped ones with further growing, and the inner part of the coating turned to be dense columnar grains. Meanwhile the preferred orientation of the grains changed from <111> to <100>. When the edge of the pyramid shaped crystal grains passivated, the grains inside the coating transformed to equiaxed ones and correspondingly their preferred orientation changed from <100> to <101>.

Key wordssurface and interface in the materials    ZrB2 coating    chemical vapor deposition    micro morphology    orientation
收稿日期: 2016-04-29     
基金资助:国家重点基础研究发展计划(2011CB605805)
Deposition rate/℃ Deposition pressure/Pa Deposition time/h Transfer rate/gmin-1 Volume flow rate/
mlmin-1
The ratio of B/Zr
ZrCl4 BCl3 H2 Ar
1300 5.0×103 2 0.9 200 600 400 2.312
1400 5.0×103 2 0.9 200 600 400 2.312
1500 5.0×103 2 0.9 200 600 400 2.312
1550 5.0×103 2 0.9 200 600 400 2.312
1600 5.0×103 2 0.9 200 600 400 2.312
表1  化学气相沉积ZrB2涂层工艺参数
图1  沉积温度不同的涂层的XRD图谱
图2  ZrB2织构系数与沉积温度的关系
图3  不同沉积温度的涂层的表面形貌
图4  不同沉积温度涂层的断面形貌
图5  气相沉积的形核示意图
α Crystal Fastest growth direction
1.0 Cubic <111>
1.5 Cubic-octahedron <110>
3.0 Octahedron <100>
Ball-shaped particle Randomly direction
表2  α值与晶体形貌及生长方向的关系
[1] S. H. Jung, H.C. Oh, J. H. Kim, et al.Pretreatment of zirconium diboride powder to improve densification[J]. J. Alloys Compd., 2013, 548(1): 173
[2] Opeka M M, Talmy I G, Zaykoski J A, et al.Oxidation-based materials selection for 2000℃+hypersonic aero surfaces: theoretical considerations and historical experience[J]. Mater Sci., 2004, 39(19): 5887
[3] Fahrenholtz W G, Hilmas G E, Refractory diborides of zirconium and hafnium[J]. Am Ceram Soc., 2007, 90(5): 1347
[4] Parthasarathy T A, Rapp R A, Opeka M, et al.A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater., 2007, 55(17): 5999
[5] C. Q. Liu, K. Z. Lin, H. J. Li, et al.In situ synthesis mechanism of ZrB2-ZrC-C composites[J], Ceram. Int, 2014, 40(40): 10297
[6] X. Ren, H. J. Li, Y. H. Chu, et al., Preparation of oxidation protective ZrB2-SiC coating by in-situ reaction method on SiC-coated carbon/carbon composites[J]. Surf. Coat. Technol, 2014, 247(5): 61
[7] Zhao D, Zhang C R, Zhang Y D, et al., Reactive preparation and properties of ZrB2 coating[J]. J. Inorg Mater, 2011, 26(9): 903
[7] (赵丹, 张长瑞, 张玉娣等, 反应法制备硼化锆耐超高温涂层. 无机材料学报[J], 2011, 26(9): 903)
[8] H J Zhou, G Le, W Zhen, et al.ZrB2-SiC Oxidation Protective Coating on C/C Composites Prepared by Vapor Silicon Infiltration Process[J]. Am Ceram Soc, 2010, 93(4): 915
[9] X Zou, Q G Fu, L Liu,et al.ZrB2-SiC coating to protect carbon/carbon composites against ablation[J]. Surf. Coat. Technol, 2013, 226(14): 17
[10] X Yang, W Li, S Wang,et al., ZrB2 coating for the oxidation protection of carbon fiber reinforced silicon carbide matrix composites[J]. Vacuum, 2013, 96(10): 63
[11] Rupa P K P, Sharma P, Mohanty R M, et al. Microstructure and phase composition of composite coatings formed by plasma spraying of ZrO2 and B4C powders[J]. J. Therm. Spray. Technol, 2010,19(4): 816
[12] X Y Yao, H J Li, Y L Zhang,et al., Ablation behavior of ZrB2-based coating prepared by supersonic plasma spraying for SiC-Coated C/C composites under oxyacetylene[J]. J. Therm. Spay .Technol, 2013, 22(4): 531
[13] D J Li, M X Wang, J J Zhang, Structural and mechanical responses of (Zr, Al)N/ZrB2 superlattice coatings to elevated-temperature annealing[J]. Mater. Sci. Eng, 2006, 423(1): 116
[14] J L Deng, L F Cheng, G P Zheng, et al.Thermodynamic study on co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3SiCl3-H2-Ar system. Thin Solid Films, 2012, 520(23): 7030
[15] A Wang, G Male .Experimental system investigation of the Zr-B-Cl-H CVD[J]. J. Eur Ceram. Soc, 1993, 11(3): 241
[16] Chen Q Y, Liu S J, Physical Chemistry [M]. Beijing: Science Press, 2012
[16] (陈启元, 刘士军. 物理化学[M]. 北京:科学出版社,2012)
[17] Li G D, Xiong X, Liu G, et al.Adjustable uniform powder feeder[P]. CHINA, 201010538190, 2010
[17] (李国栋, 熊翔, 刘岗等. 均匀可调送粉装置[P]. 中国, 201010538190, 2010)
[18] R. Y. Korotkov, P. Ricol, A. J. E.Farran. Preferred orientations in polycrystalline SnO2 films grown by atmospheric pressure chemical vapor deposition[J]. Thin Solid Films, 2006, 502(1): 79
[19] Chen Q Y, Liu Z J.Physical Chemistry [M]. Beijing, Science Press, 2012)
[19] (陈启元, 刘士军. 物理化学[M]. 北京:科学出版社,2012)
[20] K. L. Bjorklund, J. Lu, P. Heszler, et al., Kinetics, thermodynamics and microstructure of tungsten rods grown by thermal laser CVD[J]. Thin Solid Films, 2002, 416(1): 41
[21] P. Smereka, X. Q. Li, G. Russo, et al, Simulation of faceted film growth in three dimensions: Microstructure, morphology and texture[J]. Acta Mater, 2005, 53(4): 1191
[22] E. S Machlin., Materials science in microelectronics[M]. New York: Giro Press, 1995
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
[10] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[11] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[12] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[13] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[14] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[15] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.