Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 182-186    DOI: 10.11901/1005.3093.2016.235
  研究论文 本期目录 | 过刊浏览 |
C/C-Cu复合材料的压缩性能及其破坏机理
邓朝勇1,张红波1,尹健1(),熊翔1,王培1,孙淼1,李万千2
1 中南大学 粉末冶金国家重点实验室 长沙 410083
2 中南林业科技大学材料科学与工程学院 长沙 410004
Compression Performance and Failure Mechanism of C/C-Cu Composites
Chaoyong DENG1,Hongbo ZHANG1,Jian YIN1(),Xiang XIONG1,Pei WANG1,Miao SUN1,Wanqian LI2
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Material Science and Engineering School, Central South University of Forestry and Technology, Changsha 410004, China
引用本文:

邓朝勇,张红波,尹健,熊翔,王培,孙淼,李万千. C/C-Cu复合材料的压缩性能及其破坏机理[J]. 材料研究学报, 2017, 31(3): 182-186.
Chaoyong DENG, Hongbo ZHANG, Jian YIN, Xiang XIONG, Pei WANG, Miao SUN, Wanqian LI. Compression Performance and Failure Mechanism of C/C-Cu Composites[J]. Chinese Journal of Materials Research, 2017, 31(3): 182-186.

全文: PDF(832 KB)   HTML
摘要: 

以预浸炭布和铜网为原料用模压压制法制备炭纤维体积分数分别为35%、40%和45%左右的三种C/C-Cu复合材料,用Instron3369力学试验机测试了压缩性能。结果表明:炭纤维的体积分数是影响材料压缩性能的重要因素。在垂直方向上,材料的压缩性能随着炭纤维体积分数的增加而提高。炭纤维体积分数为40%的试样其压缩性能比35%的试样提高了20%,炭纤维体积分数为45%的试样比40%的试样提高了13%,提高的幅度呈先大后小的趋势。而在平行方向上,炭纤维的体积分数对压缩性能的影响没有垂直方向的显著,与试样的致密度有一定的关系。在三种试样中,炭纤维体积分数为45%的试样无论在垂直方向还是平行方向上的压缩强度都最大,分别为190.13 MPa和83.39 MPa。在平行方向和垂直方向上压缩强度的差异表明,C/C-Cu复合材料的压缩性能具有明显的各向异性。关于材料压缩的破坏方式,在垂直压缩受力方向近似沿45°对角线方向时,破坏方式为纤维层、铜网与基体炭的分离以及基体炭的压溃破坏。在平行方向压缩时炭纤维发生褶皱,并在褶皱区域产生拉压应力,使纤维发生折曲或者断裂,最终使炭纤维和基体炭以及基体炭和铜网的界面分层劈裂。

关键词 C/C-Cu复合材料压缩性能各向异性破坏机理    
Abstract

Three composites of C/C-Cu i.e. carbon fiber reinforced carbon-copper mesh with different volume fraction (35%,40% and 45%) of carbon fiber were prepared by pressing mold method and then followed by four times impregnating with resin and three times high temperature carbonizing . Their compressive properties were measured on Instron-3369 mechanical testing machine. The effect of volume fraction of carbon fiber on the compressive property was investigated. The results show that the compression performance of C/C-Cu composites increased with increase of volume fraction of carbon fiber in the vertical direction. The compression strength of the composite with 40% carbon fiber was 20% higher than the one with 35%, and that with 45% carbon fiber was 13% higher than the one with 40%. These imply claerly that the compression strength of the composites first increased and then decreased with the increasing carbon fiber content. On the other hand, the carbon fiber volume fraction has no significant effect on the compression performance in the parallel direction. Among others, the composite with 45% carbon fiber has the best compression strength in both the vertical direction and parallel direction, i.e. 190.13MPa and 83.39MPa respectively. The difference of compressive strength in the vertical direction and parallel direction shows that the compression property of C/C-Cu composites was obviously of anisotropy. By compression stress the composite damaged in the vertical direction along 45°diagonal and in the parallel direction at the interface between the carbon fiber and copper mesh.

Key wordsC/C-Cu composites    compressive properties    anisotropy    failure mechanism
收稿日期: 2016-04-29     
基金资助:国家自然科学基金(51302322)和湖南省教育厅青年基金项目(14C1187)
图1  压缩加载方向示意图
Sample Cf
/v%
Cu
/%
Density
/(gcm-3)
Porosity
/%
CFRCS-1 35.09 21.19 1.92 3.4
CFRCS-2 40.38 21.49 1.86 4.4
CFRCS-3 45.55 21.01 1.96 3.7
表1  C/C-Cu复合材料的基本性能
图2  C/C-Cu复合材料的压缩强度
图3  C/C-Cu复合材料的压缩应力-应变曲线图(a垂直方向,b平行方向)
图4  压缩破坏断口形貌(图a、b平行方向;图c、d垂直方向)
图5  C/C-Cu复合材料压缩失效宏观图(a平行方向,b垂直方向)
图6  压缩应力分布示意图(a水平压缩;b垂直压缩)
[1] Froidh O.Perspectives for a future high-speed train in the Swedish domestic travel market[J]. Journal of Transport Geography, 2008, 16(4): 268
[2] Kubo S, Kato K.Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear, 1998, 216(2): 172
[3] Yu Z P, Zhang H, Wu H B, et al.A Study on highspeed catenary-pantograph system[J]. China Railway Science, 1999, 20(1): 59
[3] (于正平, 张弘, 吴鸿标等.高速电气化铁路接触网-受电弓系统的研究[J]. 中国铁道科学, 1999, 20(1): 59)
[4] Tan C.Research on preparation, microstructure and properties of carbon/carbon-copper composites[D]. Changsha: Central South University, 2013
[4] (谭翠. 炭/炭-铜复合材料的制备及其结构与性能研究[D]. 长沙: 中南大学, 2013)
[5] Wang W F, Xiu S F, Ying M F, et al.Study on the microstructure and properties of copper-coated graphite/Cu matrix composite material[J]. Materials for Mechanical Engineering, 1999, 23(2): 41
[5] (王文芳, 许少凡, 应美芳等. 用镀铜石墨粉制备铜-石墨复合材料[J]. 机械工程材料, 1999, 23(2): 41)
[6] Kestursatya M, Kim J K, Rohatgi P k. Wear performance of copper graphite composite and a leaded copper alloy[J]. Materials Science & Engineering A, 2003, 339(1-2): 150
[7] Kubota Y, Nagasaka S, Miyauchi T, et al.Sliding wear behavior of copper alloy impregnated C/C composites under an electrical current[J]. Wear, 2013, 302(s1-2): 1492
[8] Yang L, Ran L P, Yi M Z.Carbon fiber knitted fabric reinforced copper composite for sliding contact material[J]. Materials & Design, 2011, 32(4): 2365
[9] Yin J, Zhang H B, Xiong X, et al.Effect of porous C/C substrate density on compressive property of C/C-Cu composites[J]. Powder Metallurgy Materials Science and Engineering, 2014, 19(6): 989
[9] (尹健, 张红波, 熊翔等. 多孔体密度对C/C-Cu复合材料压缩性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(6): 989)
[10] Xiong X, Huang B Y, Xiao P.Compressive properties and fracture mechanism of quasi-3D C/C composites[J]. J. Central South University (Science and Technology), 2004, 35(5): 702
[10] (熊翔, ,黄伯云, 肖鹏等. 准三维C/C复合材料的压缩性能及其破坏机理[J]. 中南大学学报(自然科学版), 2004, 35(5): 702)
[11] Huang B Y.Manufacturing of Carbon/carbon Composites for Aircraft Brakes[M]. Hunan: Science and Technology Press, 2007
[11] (黄伯云. 高性能炭/炭航空制动材料的制备技术[M]. 湖南: 科学技术出版社, 2007)
[1] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[2] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[3] 刘裕, 梁志奇, 赵崧, 常春蕊. 碳纳米管掺杂影响液晶物理参数与显示性能的实验及第一性原理计算[J]. 材料研究学报, 2022, 36(6): 425-434.
[4] 刁威, 杜磊, 汪彦博, 周海涛, 孙京丽. 选区激光熔化Ti6Al4V合金的各向异性[J]. 材料研究学报, 2022, 36(3): 231-240.
[5] 潘贇, 刘天成, 李广敏, 戴白杨, 吕娜, 张伟, 唐冬冬. 张力退火感生各向异性对纳米晶合金磁性能的影响[J]. 材料研究学报, 2020, 34(10): 753-760.
[6] 叶拓,吴远志,刘安民,唐徐,李落星. 挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理[J]. 材料研究学报, 2019, 33(2): 109-116.
[7] 李文渊, 刘建荣, 陈志勇, 赵子博, 王清江. Ti60合金板材的室温强度与其显微组织和织构的关系[J]. 材料研究学报, 2018, 32(6): 455-463.
[8] 余芳, 徐道芬, 陈送义, 陈康华, 王习锋, 刘德博, 马云龙, 黄诚, 鄢东洋. Cu含量对Al-Cu-Mn合金力学性能各向异性的影响[J]. 材料研究学报, 2018, 32(11): 853-860.
[9] 陆赵情, 苏治平, 张美云, 郝杨. 磷酸改性对对位芳纶纤维力学性能的影响和破坏机理[J]. 材料研究学报, 2017, 31(8): 597-602.
[10] 李苗苗,陈平,王辉,李建超. 环氧树脂复合泡沫塑料的制备及其拉压性能[J]. 材料研究学报, 2017, 31(2): 88-95.
[11] 王建军,高崇,刘春明. Ru-Cr下底层成分对Co-W磁性薄膜结构和磁性能的影响*[J]. 材料研究学报, 2014, 28(7): 515-520.
[12] 丛福官, 赵刚, 田妮, 李瑞锋. 7150-T7751铝合金厚板性能的不均匀性*[J]. 材料研究学报, 2013, 27(2): 144-148.
[13] 吴章斌 桂良进 范子杰. AZ31B镁合金挤压板材力学性能的各向异性[J]. 材料研究学报, 2012, 26(2): 218-224.
[14] 孟杰 金涛 孙晓峰 胡壮麒. 一种镍基单晶高温合金压缩变形的各向异性[J]. 材料研究学报, 2011, 25(4): 355-361.
[15] 杨杰 李树奎. 玻璃纤维增强气凝胶的动态力学性能及其破坏机理[J]. 材料研究学报, 2009, 23(5): 524-528.