Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 88-95    DOI: 10.11901/1005.3093.2016.234
  本期目录 | 过刊浏览 |
环氧树脂复合泡沫塑料的制备及其拉压性能
李苗苗,陈平(),王辉,李建超
北京科技大学机械工程学院 北京 100083
Preparation and Tensile-compressive Properties of Syntactic Foams of Epoxy Resin Filled with Fly Ash Cenospheres
Miaomiao LI,Ping CHEN(),Hui WANG,Jianchao LI
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李苗苗,陈平,王辉,李建超. 环氧树脂复合泡沫塑料的制备及其拉压性能[J]. 材料研究学报, 2017, 31(2): 88-95.
Miaomiao LI, Ping CHEN, Hui WANG, Jianchao LI. Preparation and Tensile-compressive Properties of Syntactic Foams of Epoxy Resin Filled with Fly Ash Cenospheres[J]. Chinese Journal of Materials Research, 2017, 31(2): 88-95.

全文: PDF(4352 KB)   HTML
摘要: 

使用万能试验机对粉煤灰微珠/环氧树脂复合泡沫塑料进行拉伸和压缩实验,并用扫描电镜(SEM)观察其断面形貌,研究了微珠含量、微珠粒径以及级配比例对复合泡沫塑料拉伸和压缩性能的影响。结果表明,随着微珠含量的增加复合泡沫塑料的拉伸和压缩强度都表现出先升高后下降的趋势,且在填充量为15phr时达到最大,其拉伸强度和压缩强度比纯环氧树脂分别提高了9.15%和6.86%。在填充量相同的条件下,微珠的粒径越小复合泡沫塑料的拉伸和压缩强度越高。填充小粒径微珠(20 μm)比填充大粒径微珠(250 μm)复合泡沫塑料的拉伸强度和压缩强度分别高158.41%和19.96%,拉伸模量和压缩模量分别高32.77%和73.59%。不同粒径微珠级配填充环氧树脂复合泡沫塑料的拉伸和压缩性能主要受小粒径微珠含量的影响,小粒径微珠含量越高其拉伸和压缩强度越高。

关键词 复合材料环氧复合泡沫拉伸性能压缩性能粉煤灰微珠    
Abstract

The tensile-compressive properties of syntactic foams of fly ash cenospheres/epoxy resin were measured by universal testing machine, and the fracture surface were characterized by scanning electron microscopy (SEM). The effect of the content, particle size and gradation ratio of fly ash cenospheres on the tensile-compressive properties of the syntactic foam was investigated. The results show that the tensile strength and compressive strength of the syntactic foam increases first and then decreases with the increase of cenospheres content. The compressive strength of the syntactic foams reaches a maximum when the content of cenospheres is 15phr, while the tensile strength and compressive strength increase by 9.15% and 6.86% compared with pure epoxy resin respectively. For the same filling amount, the smaller the particle size of the cenospheres, the higher the tensile strength and compressive strength of the syntactic foam. The tensile strength and compressive strength of the syntactic foam filled with small size cenospheres (20 μm) increase 158.41% and 19.96% respectively over that of the syntactic foam filled with large size cenospheres (250 μm). The tensile strength and compressive strength of the syntactic foam filled with cenospheres of different grading ratios is mainly affected by the content of small size cenospheres. The more the content of small size cenospheres, the higher the tensile strength and compressive strength of the syntactic foam.

Key wordscomposites    epoxy syntactic foam    tensile properties    compressive properties    fly ash cenospheres
收稿日期: 2016-04-29     
基金资助:国家自然科学基金(51305023)
图1  微珠改性流程图
图2  改性微珠在基体中分布的SEM照片
Sample number Cenospheres type Cenospheres content/phr Density/gcm-3
1 20 μm 0 1.206
2 20 μm 5 1.196
3 20 μm 10 1.155
4 20 μm 15 1.139
5 20 μμm 20 1.084
6 20 μm 25 1.076
7 250 μm 15 1.014
8 150 μm 15 1.039
9 54 μm 15 1.096
10 20 μm :54 μm =2:8 15 1.034
11 20 μm :54 μm =4:6 15 1.060
12 20 μm :54 μm =5:5 15 1.080
13 20 μm :54 μm =6:4 15 1.083
14 20 μm :54 μm =8:2 15 1.144
表1  试样参数
图3  微珠含量对环氧树脂复合泡沫塑料应力-应变关系的影响
图4  不同微珠含量下环氧树脂泡沫的拉伸断面SEM照片
图5  微珠团聚的SEM照片
Cenospheres content
/phr
Tensile strength
/MPa
Tensile modulus/MPa Compressive strength
/MPa
Compressive modulus /MPa
0 34.33 486.12 45.17 435.45
5 34.87 503.27 45.90 623.64
10 35.93 503.19 46.32 443.38
15 37.47 583.53 48.27 556.04
20 32.24 506.94 44.32 579.62
25 22.45 488.42 37.44 469.87
表2  不同微珠含量下环氧树脂复合泡沫塑料的拉伸和压缩性能
图6  微珠粒径对环氧树脂复合泡沫应力-应变关系的影响
图7  不同微珠粒径下环氧树脂复合泡沫的拉伸断面SEM图
Cenospheres size
/μm
Tensile strength
/MPa
Tensile modulus/MPa Compressive strength
/MPa
Compressive modulus /MPa
250 14.50 439.51 40.24 320.31
150 23.80 474.26 41.02 431.45
54 31.39 493.42 43.41 308.29
20 37.47 583.53 48.27 556.04
表3  不同微珠粒径下环氧树脂复合泡沫塑料的拉伸和压缩性能
图8  微珠级配比对环氧树脂复合泡沫塑料应力-应变关系的影响
图9  微珠粒径不同的环氧树脂复合泡沫的拉伸断面SEM图
Grading ratio
/20 μm:54 μm
Tensile strength
/MPa
Tensile
modulus /MPa
Compressive strength
/MPa
Compressive modulus /MPa
2:8 31.70 507.54 43.83 510.68
4:6 34.03 486.09 44.68 540.74
5:5 34.38 569.01 44.92 442.29
6:4 34.92 537.27 45.47 356.44
8:2 35.59 527.69 46.31 257.02
表4  不同微珠级配比例下环氧树脂复合泡沫塑料的拉伸和压缩性能
[1] Wouterson E M, Boey F Y C, Wong S -C,et al. Nano-toughening versus micro-toughening of polymer syntactic foams[J]. Compos. Sci. Technol., 2007, 67(14): 2924
[2] Woldesenbet E.Low velocity impact properties of nanoparticulate syntactic foams[J]. Mat. Sci. Eng. A-Struct., 2008, 496(1-2): 217
[3] Yu M, Zhu P, Ma Y Q.Experimental study and numerical prediction of tensile strength properties and failure modes of hollow spheres filled syntactic foams[J]. Comp. Mater. Sci., 2012, 63: 232
[4] Bardella L, Malanca F, Ponzo P, et al.A micromechanical model for quasi-brittle compressive failure of glass-microballoons/thermoset-matrix syntactic foams[J]. J. Eur. Ceram. Soc., 2014, 34(11): 2605
[5] Huang R X, Li P F.Elastic behaviour and failure mechanism in epoxy syntactic foams: The effect of glass microballoon volume fractions[J]. Compos. Part B-Eng., 2015, 78: 401
[6] Wouterson E M, Boey F Y C, Hu X, et al. Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures[J]. Compos. Sci. Technol., 2005, 65(11-12): 1840
[7] Asif A, Rao L V, Ninan K N.Nanoclay reinforced thermoplastic toughened epoxy hybrid syntactic foam: Surface morphology, mechanical and thermo mechanical properties[J]. Mat. Sci. Eng. A-Struct., 2010, 527(23): 6184
[8] Ferreira J A M, Capela C, Cost J D. A study of the mechanical behaviour on fibre reinforced hollow microspheres hybrid composites[J]. Compos Part A-Appl. S., 2010, 41(3): 345
[9] Swetha C, Kumar R.Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Mater. Design, 2011, 32(8-9): 4152
[10] Jumahat A, Soutis C, Mahmud J, et al.Compressive properties of nanoclay/epoxy nanocomposites[J]. Procedia Engineering, 2012, 41: 1607
[11] Tian A P, Yu W, Li D J.Compressive and flexural mechanical properties of foam Al-HGM/epoxy foam composite[J]. Acta. Mater. Compos. Sin., 2013, 30(4): 74
[11] (田爱平, 余为, 李东杰. 泡沫铝-空心玻璃微珠/环氧泡沫复合材料压缩及弯曲力学性能[J]. 复合材料学报, 2013, 30(4): 74)
[12] Wang L J, Yang X, Zhang J, et al.The compressive properties of expandable microspheres/epoxy foams[J]. Compos. Part B-Eng., 2014, 56: 724
[13] Seaglar J, Rousseau C-E.Compressive evaluation of homogeneous and graded epoxy-glass particulate composites[J]. Mat. Sci. Eng. C-Mater., 2015, 49: 727
[14] Panteghini A, Bardella L.On the compressive strength of glass microballoons-based syntactic foams[J]. Mech. Mater., 2015, 82: 63
[15] Nian G D, Shan Y J, Xu Q, et al.Failure analysis of syntactic foams: A computational model with cohesive law and XFEM[J]. Compos. Part B-Eng., 2016, 89: 18
[16] Sun T, Fan H Y, Wang Z, et al.Modified nano Fe2O3-epoxy composite with enhanced mechanical properties[J]. Mater. Design, 2015, 87: 10
[17] Derradji M, Ramdani N, Zhang T, et al.Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles[J]. Mater. Design, 2015, 71: 48
[18] Wang X, Wang L, Su Q, et al.Use of unmodified SiO2 as nanofiller to improve mechanical properties of polymer-based nanocomposites[J]. Compos. Sci. Technol., 2013, 89: 52
[19] Baheti V, Militky J, Mishra R, et al.Thermomechanical properties of glass fabric/epoxy composites filled with fly ash[J]. Compos. Part B-Eng., 2016, 85: 268
[20] Sharmila T K B, Antony J V, Jayakrishnan M P, et al. Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide[J]. Mater. Design, 2016, 90: 60
[21] Li J N, Yu K J, Qian K, et al.Effect of graphene oxide-SiO2 hybrid materials on tensile properties of epoxy[J]. Acta. Mater. Compos. Sin., 2014, 31(5): 1192
[21] (李佳铌, 俞科静, 钱坤等. 氧化石墨烯-SiO2杂化材料对环氧树脂拉伸性能的影响[J]. 复合材料学报, 2014, 31(5): 1192)
[1] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.