Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 102-109    DOI: 10.11901/1005.3093.2016.222
  本期目录 | 过刊浏览 |
Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能
县涛1(),邸丽景1,2,马俊1,桑萃萃1,魏学刚1,周永杰1
1 青海师范大学物理系 西宁 810008
2 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
Photocatalytic Degradation Activity of BaTiO3 Nanoparticles Modified with Au in Simulated Sunlight
Tao XIAN1(),Lijing DI1,2,Jun MA1,Cuicui SANG1,Xuegang WEI1,Yongjie ZHOU1
1 Department of Physics, Qinghai Normal University, Xining 810008,China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

县涛,邸丽景,马俊,桑萃萃,魏学刚,周永杰. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能[J]. 材料研究学报, 2017, 31(2): 102-109.
Tao XIAN, Lijing DI, Jun MA, Cuicui SANG, Xuegang WEI, Yongjie ZHOU. Photocatalytic Degradation Activity of BaTiO3 Nanoparticles Modified with Au in Simulated Sunlight[J]. Chinese Journal of Materials Research, 2017, 31(2): 102-109.

全文: PDF(2905 KB)   HTML
摘要: 

用聚丙烯酰胺凝胶法制备BaTiO3纳米颗粒,然后用光还原法在其表面沉积Au颗粒,制备出Au/BaTiO3复合光催化剂。使用X射线粉末衍射技术(XRD)、透射电子显微镜(TEM)、紫外-可见光漫反射光谱(UV-Vis DRS)和荧光光谱(PL)等手段对样品进行了表征。结果表明:Au修饰没有改变BaTiO3的晶体结构;粒径分布在5~20 nm的Au纳米颗粒,附着在BaTiO3颗粒表面(平均粒径约为55 nm);Au纳米颗粒的表面等离子体共振吸收效应(SPR)使Au/BaTiO3对~560 nm处的可见光产生较强的吸收;与BaTiO3单体相比,Au/BaTiO3中光生电子和空穴的复合几率明显降低。同时,提出了Au纳米颗粒在BaTiO3表面的形成机制。以偶氮染料亚甲基蓝(MB)作为目标降解物,在模拟太阳光的照射下研究了产物的光催化活性和光催化稳定性。结果表明:适量的Au修饰明显提高了BaTiO3的光催化降解活性,且使Au/BaTiO3具有良好的光催化稳定性。探讨了Au纳米颗粒改善BaTiO3模拟太阳光光催化性能的机理。

关键词 光催化BaTiO3纳米颗粒Au改性    
Abstract

BaTiO3 nanoparticles were fabricated by gel method with polyacrylamide as raw material, and then Au nanoparticles were deposited on the surface of BaTiO3 via a photocatalytic reduction method to yield Au/BaTiO3 composite photocatalysts. The composite photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence (PL) spectroscopy. The results show that the BaTiO3 particles undergo no structural change after the deposition of gold; The Au particles with size of 5-20 nm were deposited on the surface of BaTiO3 particles with an average size of ~55 nm; The composites present light absorbance centered around 560 nm due to the surface plasmon resonance (SPR) effect of Au nanoparticles; The Au/BaTiO3 composites exhibit a reduction in recombination probability of photo-generated electrons and holes compared to bare BaTiO3. In addition, the formation mechanism for Au nanoparticles on the surface of BaTiO3 particles is proposed. The photocatalytic activity of the as-prepared composite photocatalyst was evaluated by the degradation of methylene blue (MB) under simulated sunlight irradiation, and the photocatalytic stability of the composites was also investigated. The results reveal that the photocatalytic activity of BaTiO3 can be improved by the deposition of appropriate amount of gold, and moreover the composite photocatalyst exhibits good reusability. Finally, the promotion mechanism of Au particles on the simulated sunlight photocatalytic activity of BaTiO3 is also discussed.

Key wordsphotocatalysis    BaTiO3    nanoparticles    Au    modification
收稿日期: 2016-04-22     
基金资助:国家自然科学基金(51602170, 11164022), 教育部“春晖计划”合作科研项目(Z2015046),青海省自然科学基金青年项目(2016-ZJ-954Q),青海师范大学中青年科研基金
图1  BaTiO3和0.9Au/BaTiO3样品的XRD图谱以及BaTiO3的标准XRD衍射图谱
图2  BaTiO3和Au/BaTiO3样品的TEM照片和EDX能谱图
图3  Au/BaTiO3的形成机理示意图
图4  BaTiO3和Au/BaTiO3样品的紫外-可见光漫反射光谱以及相应的一阶微分漫反射光谱
图5  BaTiO3和0.9Au/BaTiO3样品的PL光谱
图6  BaTiO3和Au/BaTiO3样品对MB的吸附率、模拟太阳光和可见光光催化降解活性
图7  0.9Au/BaTiO3光催化降解MB的循环实验
图8  Au纳米颗粒改善BaTiO3模拟太阳光光催化性能的机理示意图
[1] Fox M A, Dulay M T.Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93(1): 341
[2] Hoffmann M R, Martin S T, Choi W, et al.Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95(1): 69
[3] Wang R Y, Ao W, Chen M, et al.Effect of calcination temperature on photocatalytic property of N-doped titania hollow microspheres[J]. Chin. J. Mater. Res., 2015, 29(6): 434
[3] (王如意, 敖卫, 陈苗等. 煅烧温度对N掺杂TiO2中空介孔微球光催化性能的影响[J]. 材料研究学报, 2015, 29(6): 434)
[4] He M Y, Zhang H, Dai Y T, et al.Preparation and photocatalytic activity of sepiolite/flower-like BiOCl nanocomposites[J]. Chin. J. Mater. Res., 2015, 29(3): 178
[4] (何明乙, 张欢, 戴亚堂等. 海泡石-花球状BiOCl纳米复合材料的制备及其光催化性能[J]. 材料研究学报, 2015, 29(3): 178)
[5] Wang W P, Yang H, Xian T, et al.Polyacrylamide gel synthesis of BaTiO3 nanoparticles and its photocatalytic properties for methyl red degradation[J]. Chinese. J. Catal., 2012, 33(2): 354
[5] (王伟鹏, 杨华, 县涛等. BaTiO3纳米颗粒的聚丙烯酰胺凝胶法合成及光催化降解甲基红性能[J]. 催化学报, 2012, 33(2): 354)
[6] Wang P G, Fan C M, Wang Y W, et al.A dual chelating sol-gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water[J]. Mater. Res. Bull., 2013, 48(2): 869
[7] Cui Y F, Briscoe J, Dunn S.Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-in?uence on the carrier separation and stern layer formation[J]. Chem. Mater., 2013, 25(21): 4215
[8] Devi L G, Krishnamurthy G.TiO2- and BaTiO3-assisted photocatalytic degradation of selected chloroorganic compounds in aqueous medium: correlation of reactivity/orientation effects of substituent groups of the pollutant molecule on the degradation rate[J]. J. Phys. Chem. A, 2011, 115(4): 460
[9] Cui Z K, Mi L W, Fa W J, et al.Preparation and photocatalytic performance of Pt/BiOCl nanostructures[J]. Chin. J. Mater. Res., 2013, 27(6): 583
[9] (崔占奎, 米立伟, 法文君等. Pt/BiOCl纳米结构的制备及其光催化性能[J]. 材料研究学报, 2013, 27(6): 583)
[10] Xian T, Yang H, Di L J, et al.Enhanced photocatalytic activity of SrTiO3 particles by surface decoration with Ag nanoparticles for dye degradation[J]. Phys. Scr., 2015, 90(5): 055801
[11] Linic S, Christopher P, Ingram D B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Mater., 2011, 10(12): 911
[12] Wang C L, Astruc D.Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion[J]. Chem. Soc. Rev., 2014, 43(20):7188
[13] Liu J W, Sun Y, Li Z H.Ag loaded ?ower-like BaTiO3 nanotube arrays: Fabrication and enhanced photocatalytic property[J]. Crystengcomm, 2012, 14(4): 1473
[14] Su R, Shen Y J, Li L L, et al.Silver-modi?ed nanosized ferroelectrics as a novel photocatalyst[J]. Small, 2014, 11(2): 202
[15] Zhang S W, Zhang B P, Li S, et al.SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films[J]. J. Alloys Compd., 2016, 654: 112
[16] Karunakaran C, Anilkumar P, Gomathisankar P.Photoproduction of iodine with nanoparticulate semiconductors and insulators[J]. Chem Cent J., 2010, 5(1): 1
[17] Xing M Y, Yang B X, Yu H, et al.Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal(001) and(110) facets[J]. J. Phys. Chem. Lett., 2013, 4(22): 3910
[18] Auer S, Frenkel D.Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy[J]. Nature, 2001, 413(6857): 711
[19] Lin X P, Xing J C, Wang W D, et al.Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts[J]. J. Phys. Chem. C, 2007, 111(5352): 836
[20] Yang J, Wang X H, Chen Y M, et al.Enhanced photocatalytic activities of visible-light driven green synthesis in water and environmental remediation on Au/Bi2WO6 hybrid nanostructures[J]. RSC Adv., 2015, 5(13): 9771
[21] Yamada Y, Kanemitsu Y.Photoluminescence spectra of perovskite oxide semiconductors[J]. J. Lumin., 2013, 133(1): 30
[22] Patra B K, Guria A K, Dutta A, et al.Au-SnS hetero nanostructures: size of Au matters[J]. Chem. Mater., 2014, 26(24): 7194
[23] Xu D B, Yang S B, Jin Y, et al.Ag-decorated ATaO3(A = K, Na) nanocube plasmonic photocatalysts with enhanced photocatalytic water-splitting properties[J]. Langmuir, 2015, 31(35): 9694
[24] Hou W B, Hung W H, Pavaskar P, et al.Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions[J]. ACS Catal., 2011, 1(8): 929
[25] Xian T, Yang H, Di L J, et al.Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation[J]. J. Alloys Compd., 2015, 622: 1098
[26] Jiang H Y, Cheng K, Lin J.Crystalline metallic Au nanoparticle-loaded a-Bi2O3 microrods for improved photocatalysis[J]. Phys. Chem. Chem. Phys., 2012, 14(35): 12114
[27] Yan J Q, Wu G J, Guan N J, et al.Synergetic promotion of the photocatalytic activity of TiO2 by gold deposition under UV-visible light irradiation[J]. Chem. Commun., 2013, 49(100): 11767
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[4] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[5] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[6] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[7] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[8] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[9] 谭冲, 李媛媛, 王欢欢, 李俊生, 夏至, 左金龙, 姚琳. g-C3N4/Ag/TiO2 NTs的制备及其对西维因的光催化降解[J]. 材料研究学报, 2022, 36(5): 392-400.
[10] 李园园, 曾寒露, 蒲红争, 蒋明珠, 王仲明, 杨怡萌, 公祥南. 基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究[J]. 材料研究学报, 2022, 36(3): 206-212.
[11] 曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.
[12] 荆倩, 曹晗, 刘方园, 郗会娟, 李超祥, 邵韵航, 曹美文, 夏永清, 王生杰. 铁离子掺杂TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(11): 862-870.
[13] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[14] 蔡垚, 吴红枚, 刘武, 李端, 范诗易, 王洋洋. 环氧大豆油化学接枝聚乳酸的制备及其性能[J]. 材料研究学报, 2022, 36(1): 73-80.
[15] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.