Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (12): 921-930    DOI: 10.11901/1005.3093.2016.176
  本期目录 | 过刊浏览 |
膨胀石墨/硬脂酸复合相变材料的相变动力学*
李云涛,晏华(),汪宏涛,王群
后勤工程学院化学与材料工程系 重庆 401311
Phase Transformation Kinetics of Phase Change Materials of Expanded Graphite/Stearic Acid Composite
Yuntao LI,Hua YAN(),Hongtao WANG,Qun WANG
Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311, China
引用本文:

李云涛,晏华,汪宏涛,王群. 膨胀石墨/硬脂酸复合相变材料的相变动力学*[J]. 材料研究学报, 2016, 30(12): 921-930.
Yuntao LI, Hua YAN, Hongtao WANG, Qun WANG. Phase Transformation Kinetics of Phase Change Materials of Expanded Graphite/Stearic Acid Composite[J]. Chinese Journal of Materials Research, 2016, 30(12): 921-930.

全文: PDF(3548 KB)   HTML
摘要: 

以硬脂酸(SA)为相变材料, 以膨胀石墨(EG)为封装材料, 采用熔融共混法制备了硬脂酸/膨胀石墨复合相变材料(SA/EG-PCMs)。采用多重率DSC、SEM、FT-IR、TG等方法对SA/EG-PCMs的结构和性能进行表征, 应用非等温动力学数据处理模型进行了相变动力学研究。结果表明: EG具有大量网状结构的空洞(由10~50 μm厚的石墨片叠合而成的平行塌陷片层构成), 通过表面吸附和微孔束缚对硬脂酸进行有效封装, 使其颗粒粒径减小; 根据相变动力学分析, EG对SA分子链段的热扩散运动具有限制作用, 使SA/EG-PCMs的活化能均高于纯SA(E为535.55 kJ/mol), 热稳定性提高; 且随着EG含量的提高SA/EG-PCMs的活化能逐渐增大, 当EG含量(质量分数, 下同)高于10%时EG对SA分子链端的阻碍作用加剧, 使复合体系的相变温度和相变焓下降的幅度增大。

关键词 复合材料复合相变材料膨胀石墨硬脂酸相变动力学    
Abstract

Phase change materials of expanded graphite/stearic acid composite (SA/EG-PCMs) were prepared by melt-blending method with stearic acid (SA) as phase change material and expanded graphite (EG) as packing material. The structure and property of SA/EG-PCMs were characterized by SEM, FT-IR, TG and the DSC of multi rate, and their phase transformation kinetics was studied by the model of data processing of non-isothermal kinetics. The results show that there exist a lot of holes with network structures within EG, which were composed of parallel and collapsed laminas of stacked thinner graphite of 10~50 μm, with which SA was packaged thereby, the resulted particle size of SA/EG-PCMs was decreased. According to the analysis of the phase transformation kinetics, EG might play certain role in hindering the thermal migration of the molecular chains of DA; the activation energy of SA/EG-PCMs was higher than that of the pure SA (E is 535.55 kJ/mol), indicating the higher thermal stability of the former; With the increasing EG content, the activation energy of SA/EG-PCMs increased gradually, as the EG content over 10%, the blocking effect of SA/EG-PCMs on the migration of molecular chain of SA increased much more obviously, and which enable the dissension of the phase transition temperature and phase change enthalpy to be enlarged.

Key wordscomposite    composite phase change materials    expanded graphite    stearic acid    phase transformation    kinetics
收稿日期: 2016-04-05     
基金资助:* 国家自然科学基金项目51272283资助
图1  制备SA/EG-PCMs流程示意图
图2  相变材料反应过程的DSC曲线和峰形指数
图3  EG、SA/EG-PCMs的微观形貌
图4  SA、SA/EG-PCMs的红外光谱分析图
EG(%, mass fraction) β(K/min) T0(K) Tp(K) Tf(K) Tr(K) H(J/g)
0 3 298.6 338.2 341.4 333.4 181.4
5 297.6 339.1 342.7 332.5 184.1
8 297.3 340.3 345.4 333.5 186.6
10 296.9 341.7 347.1 333.7 182.5
5 3 298.3 337.3 338.9 331.7 171.5
5 298.1 338.1 342.0 331.6 170.1
8 297.6 339.1 345.0 332.1 168.4
10 297.9 339.6 345.6 332.4 170.6
10 3 299.1 336.0 336.5 331.1 157.6
5 298.6 336.7 338.2 330.5 159.9
8 298.4 337.6 341.2 331.2 160.1
10 298.7 338.4 342.6 331.7 161.6
15 3 299.6 335.8 336.2 330.5 148.4
5 297.3 336.4 338.1 330.7 147.1
8 297.9 337.1 340 330.9 146.3
10 298.1 337.6 341.2 331.2 147.5
20 3 299.7 335.4 335.6 329.4 135.4
5 299.3 335.9 337.4 330.7 135.2
8 298.2 336.6 339.3 331.2 134.9
10 298.6 337.1 340.1 331.4 135.4
表1  不同EG含量的复合相变材料在不同升温速率(β)下初温(T0)、峰温(TP)、及终温(Tf)、相变温度(Tr)以及相变潜热H
图5  升温速率不同的SA、SA/EG-PCMs的DSC曲线
EG/%, mass fraction 0 5 10 15 20
E(kJ/mol) 535.55 599.81 685.59 793.92 951.36
R2 0.99514 0.96503 0.98253 0.99412 0.99154
表2  SA/EG-PCMs的活化能值E和决定系数R2
图6  ln(β/TP2)与(1/TP)的关系曲线和活化能
Influence factor Micropore binding Surface adsorption
SA/EG-PCMs Micropore binding Specific surface area Surface polarity Hydrogen bond
表3  SA与EG的相互作用
图7  EG与SA相互作用的机理图
Heating rate/℃min-1 Reaction order (n)
S1 S2 S3 S4 S5
3 0.90 0.90 0.92 0.93 0.95
5 0.92 0.93 0.96 0.96 0.98
8 0.96 0.97 0.99 0.99 1.03
10 1.03 1.07 1.06 1.10 1.14
表4  不同升温速率下SA/EG-PCMs固-液相变的反应级数
图8  SA/EG-PCMs的热分析
图9  SA/EG-PCMs在冷热循环前后的红外光谱图
图10  硬脂酸结晶分子层
1 Chcralathan M, Vclraj R Rcnganarayanan S, Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system, J. Zhejiang Univ. Sci. A, 7(11), 1888(2006)
2 Ho C J, Gao J Y, Preparation and thermophysical properties of nanoparticlein-paraffin emulsion as phase change material, Int. Commun. Heat. Mess Trans., 36(5), 468(2009)
3 Ince S, Seki Y, Ezan M A, Thermal properties of myristic acid/graphite nanoplates composite phase change materials, Rnenwable Energy, 75, 245(2015)
4 He Hongtao, Yue Qinyan, Gao Baoyu, The effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials, Energy Conversion Management, 69, 117(2013)
5 Wang Lijiu, Meng Duo, Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage, Appl. Energy, 87(8), 2662(2010)
6 TIAN Yunfeng, LI Zhen, WANG Yang, ZENG Ping, JIANG Lingyi, Preparation and performance of a phase change heat storage composite of paraffin/different particle sized expanded graphite, Chinese Journal of Materials Research, 29(4), 265(2015)
6 (田云峰, 李珍, 王洋, 曾萍, 姜凌艺, 石墨/不同粒径膨胀石墨复合相变蓄热材料的制备和性能, 材料研究学报, 29(4), 265(2015))
7 XIAO Xin, ZHANG Peng, Thermal characterization of graphite foam/paraffin composite phase change material, Journal of Engineering Thermophysics, 34(3), 532(2013)
7 (肖鑫, 张鹏, 泡沫石墨/石蜡复合相变材料热物性研究, 工程热物理学报, 34(3), 532(2013))
8 WANG Fang, ZHANG Gongzheng, Nonisothermal kinetics of solid-solid phase transitions in polyethylene glycol/polyacrylamide phase change materials, Polymer Materials Science and Engineering, 23(6), 118(2007)
8 (王芳, 张公正, 聚乙二醇/聚丙烯酰胺相变材料非等温固-固相变动力学, 高分子材料科学与工程, 23(6), 118(2007))
9 ZHANG Lei, Study on preparation, properties and phase change heat transfer process of polyethylene glycol-based composite thermal energy storage materials, PhD disseration (Wuhan, Wuhan University of Technology, 2012)
9 (张磊, 聚乙二醇基复合储热材料的制备、性能及其相变传热过程研究, 博士学位论文(武汉, 武汉理工大学, 2012))
10 ZHANG Ni, The preparation and dynamics research of composite phase change thermal storage materials and its application in building materials, Master thesis (Guangzhou, South China University of Technology, 2012)
10 (张妮, 复合相变蓄热材料的制备、相变动力学研究及在建筑材料中的应用, 硕士学位论文(广州, 华南理工大学, 2012))
11 HUANG Xue, CUI Yingde, YIN Guoqiang, ZHANG Buning, Preparation and phase transformation kinetic of organic modified montmorillonite based composite phase change material, Materials Review, 29(8), 64(2015)
11 (黄雪, 崔英德, 尹国强, 张步宁, 有机改性蒙脱土基复合相变材料的制备及相变动力学分析, 材料导报, 29(8), 64(2015))
12 Kissinger H E, Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29(11), 1704(1957)
13 ZHANG Zhengguo, LONG Na, FANG Xiaoming, Study on performance of paraffin/expanded graphite composite phase-change material, Journal of Function Materials, 8(40), 1314(2009)
13 (张正国, 龙娜, 方晓明, 石蜡/膨胀石墨复合相变储热材料的性能研究, 功能材料, 8(40), 1314(2009))
14 YANG Hua, MAO Jian, FENG Jie, Investigation on preparation and performance of paraffin/silicon dioxide composite phase change materials, Materials Review, 24(15), 279(2010)
14 (杨化, 毛健, 冯杰, 石蜡/SiO2复合相变材料的制备及性能测试, 材料导报, 24(15), 279(2010))
15 A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng., 27(8), 1274(2007)
16 Feng L L, Zheng J, Yang H Z, Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials, Solar Energy Materials and Solar Cells, 95, 646(2011)
17 ZHANG Qing, WANG Hongli, MI Xin, Preparation and characterization of lauric-myristic-capric acid/expanded graphite form-shaped composite phase change material, New Chemical Materials, 43(4), 47(2015)
17 (张庆, 王宏丽, 米欣, 月桂酸-肉豆蔻酸-癸酸/膨胀石墨定形相变材料的制备与性能研究, 化工新型材料, 43(4), 47(2015))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.