Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (1): 57-64    DOI: 10.11901/1005.3093.2016.158
  本期目录 | 过刊浏览 |
典型碳纤维编织布的热解动力学
徐艳英1,2,张颖1,2,王志1,2(),陈健1,2
1 沈阳航空航天大学 辽宁省通用航空重点实验室 沈阳 110136
2 沈阳航空航天大学 辽宁省飞机火爆防控及可靠性适航技术重点实验室 沈阳 110136
Study on Pyrolysis Kinetics of Typical Carbon Fiber Bidirectional Sheet
Yanying XU1,2,Ying ZHANG1,2,Zhi WANG1,2(),Jian CHEN1,2
1 Liaoning Key Laboratory of General aviation, Shenyang Aerospace University, Shenyang 110136, China
2 Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

徐艳英,张颖,王志,陈健. 典型碳纤维编织布的热解动力学[J]. 材料研究学报, 2017, 31(1): 57-64.
Yanying XU, Ying ZHANG, Zhi WANG, Jian CHEN. Study on Pyrolysis Kinetics of Typical Carbon Fiber Bidirectional Sheet[J]. Chinese Journal of Materials Research, 2017, 31(1): 57-64.

全文: PDF(959 KB)   HTML
摘要: 

使用DTG-60(AH)热重-差热同步分析仪研究了升温速率对典型碳纤维编织布(T300-3000)热解特性的影响。结果表明,升温速率对典型碳纤维编织布的热解过程有显著的影响。随着升温速率的提高最大失重速率温度向高温方向移动,两峰之间的距离逐渐增大,峰面积不断增加。碳纤维编织布的热解分可为三个阶段:环氧树脂基两个分解阶段和碳纤维分解阶段。用Kissinger法和Flynn-Wall-Ozawa法进行热解动力学分析,得到了不同升温速率条件下的表观活化能和表观指前因子。用两种计算方法得到的结果基本上一致,加入环氧树脂基材的碳纤维编织布在一定质量损失范围内的热稳定性较强且可控。

关键词 复合材料碳纤维编织布热解动力学表观活化能热稳定性    
Abstract

The influence of heating rate on the pyrolysis characteristics of a carbon fiber bidirectional sheet (T300-3000) in air stream was investigated by means of DTG-60(AH) TG/DTA simultaneous thermal analyzer. The results show that the thermal degradation behavior of the sheet was affected greatly by heating rate. The temperature related with the maximum mass loss rate shifted towards high temperature,and the distance between the two peaks of DTG curves was gradually larger and the peak areas increased with the increasing heating rate. The pyrolysis process of the carbon fiber bidirectional sheet can be divided into three stages including two decomposition stages of epoxy resin and one of the carbon fiber decomposition. The pyrolysis kinetics curves of the carbon fiber bidirectional sheet were analyzed by Kissinger method and Flynn-Wall-Ozawa method,and the acquired apparent activation energy and the apparent pre-exponential factor for different heating rates were of good accordance with each other. The thermostability of the carbon fiber bidirectional sheet with epoxy resin is relatively strong and controllable within a certain range of mass loss.

Key wordscomposites    carbon fiber bidirectional sheet    pyrolysis kinetics    apparent activation energy    thermal stability
收稿日期: 2016-03-25     
基金资助:辽宁省科学事业公益研究基金(GY2014-C-005)和辽宁省自然科学基金(201602567)
图1  不同升温速率条件下环氧树脂基材的TG对比曲线
图2  不同升温速率条件下环氧树脂基材的DTG对比曲线
Heating
rates
/℃min-1
The temperature scope of
material loss
/℃
Initial decomposition temperature Ti/℃ Final temperature
Tf /℃
The temperature of maximum weight loss rates
Tp /℃
First
stage
Second
stage
First
stage
Second
stage
5 240~385 385~581 240 581 279 513
10 245~393 393~622 245 622 294 542
20 249~399 480~678 249 678 314 570
30 254~435 481~705 254 705 328 591
40 258~446 502~768 258 768 341 613
表1  环氧树脂基材热解参数
图3  不同升温速率条件下碳纤维编织布(粉末)的TG曲线
图4  不同升温速率条件下碳纤维编织布(粉末)的DTG曲线
Heating
rates
/℃min-1
The temperature scope of material loss/℃ Initial decomposition temperature Ti /℃ Final temperature
Tf /℃
The temperature of maximum weight loss rates Tp /℃
First
stage
Second stage Third stage First
stage
Second stage Third
stage
5 241~357 459~537 573~704 241 704 260 492 637
10 244~389 393~570 570~751 244 751 279 518 679
20 244~397 422~573 573~794 244 794 297 - 692
30 245~416 416~597 597~887 245 887 308 538 722
40 258~428 428~617 617~917 258 917 318 566 765
表2  碳纤维编织布(粉末)热解参数
图5  不同升温速率下碳纤维编织布(块状)的TG曲线
图6  不同升温速率下碳纤维编织布(块状)的DTG曲线
Materials Heating rates
/℃min-1
The temperature
scope of material
loss/℃
Initial decomposition temperature
Ti /℃
Final temperature Tf /℃ The temperature of
maximum weight loss rates Tp /℃
First
stage
Second
stage
Third
stage
First
stage
Second stage Third
stage
Carbon fiber
blocks
5 244~451 451~573 573~779 244 779 351 493 735
10 247~478 478~567 567~811 247 811 368 541 689
20 261~486 486~587 587~831 261 831 386 - 707
30 275~489 489~631 631~911 275 911 402 - 754
40 283~496 496~638 638~991 283 991 410 594 861
表3  碳纤维编织布(块状)热解参数
图7  在环氧树脂热解过程中lnβiTpi2与1Tpi的关系曲线
图8  在碳布粉末热解过程中lnβiTpi2与1Tpi的关系曲线
图9  在碳布块状热解过程中lnβiTpi2与1Tpi的关系曲线
图10  在环氧树脂热解过程中lgβ-1/T的关系曲线
图11  在碳布粉末热解过程中lgβ-1/T的关系曲线
图12  在碳布块状热解过场中lgβ-1/T的关系曲线
Materials Heating rates /℃min-1 Slope k=E/R Ek/kJ?mol-1 lnAk
Epoxy resin 5
10
20
30
40
10.318 86 10.1
14.293 119 9.1
Carbon fiber bidirectional sheet powder 10.104 84 10.3
16.861 140 13.3
13.603 113 5.7
Carbon fiber bidirectional sheet blocks 13.372 111 12.8
12.545 104 7.1
6.302 52 -3.04
表4  用Kissinger法计算三个材料热解动力学参数
Conversion α/% Apparent activation energy E/kJ?mol-1
Epoxy resin Carbon fiber bidirectional sheet powder Carbon fiber bidirectional sheet blocks
5 91 78 91
10 102 93 160
15 99 119 172
20 102 93 221
25 102 92 68
30 110 98 117
35 121 105 129
40 160 107 163
45 208 106 162
50 269 113 156
55 196 113 143
60 168 105 131
65 130 105 120
70 114 97 113
75 102 97 107
80 102 94 102
85 97 84 100
90 91 79 97
95 84 82 93
表5  Flynn-Wall-Ozawa法计算三个材料表观活化能
[1] Li J L, Zhao F, Zhang Y, et al.Application of carbon fiber and its composites in military industry[J]. Synth. Fiber China, 2014, 43(3): 33
[1] (李建利, 赵帆, 张元等. 碳纤维及其复合材料在军工领域的应用[J]. 合成纤维, 2014, 43(3): 33)
[2] Chen K S, Yeh R Z.Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere[J]. J. Hazard. Mater., 1996, 49: 105
[3] Wu L Y.The application extend of advanced composite materials: technology markets of ACM application in aeronautics, astronautics and civil aviation[J]. New Chem. Mater., 2012, 40(1): 4
[3] (吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1): 4)
[4] Eibl S.Influence of carbon fibre orientation on reaction-to-fire properties of polymer matrix composites[J]. Fire Mater., 2012, 36: 309
[5] Szolnoki B, Bocz K, Sóti P L, et al.Development of natural fibre reinforced flame retarded epoxy resin composites[J]. Polym. Degrad. Stabil., 2015, 119: 68
[6] Régnier N, Fontaine S.Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG[J]. J. Therm. Anal. Calorim., 2001, 64: 789
[7] Quang Dao D, Luche J, Richard F, et al.Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter[J]. Int. J. Hydrogen Energy, 2013, 38: 8167
[8] Yu Q, Chen P, Lu C.Numerical simulation of thermal stress distribution in CF/BMI composite subjected to thermal cycles[J]. Chinese J. Mater. Res., 2012, 26: 583
[8] (于祺, 陈平, 陆春. 碳纤维/双马树脂基复合材料在热循环过程中热应力分布的数值模拟[J]. 材料研究学报, 2012, 26: 583)
[9] Chen B, Wan H, Mu J Y, et al.Ablative mechanism of carbon-fiber/epoxy composite irradiated by repetition frequency laser[J]. High Power Laser and Particle Beams, 2008, 20: 547
[9] (陈博, 万红, 穆景阳等. 重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J]. 强激光与粒子束, 2008, 20: 547)
[10] Huang C, Yang H T, Li X Y, et al.Research and development of Kissinger equation[J]. Chinese J. Explos. Propel., 2014, 37: 26
[10] (黄川, 杨洪涛, 李翔宇等. 基辛格方程的研究与发展[J]. 火炸药学报, 2014, 37: 26)
[11] Hu R Z, Gao S L, Zhao F Q, et al.Thermal Analysis Kinetics [M]. 2nd Ed. Beijing: Science Press, 2008
[11] (胡荣祖, 高胜利, 赵凤起等. 热分析动力学 [M]. 第二版. 北京: 科学出版社, 2008)
[12] Chen Z Q, Liu H B, He Y D, et al.Thermal characteristics of high char yield phenolic resin[J]. Eng. Plast. Appl., 2006, 34(11): 56
[12] (陈智琴, 刘洪波, 何月德等. 高残炭率酚醛树脂的耐热性能研究[J]. 工程塑料应用, 2006, 34(11): 56)
[13] He H Z, Luo Z Y, Cen K F.Study on dynamic reaction parameters of anthracite combustion by using different thermoanalytical methods[J]. Power Eng., 2005, 25: 493
[13] (何宏舟, 骆仲泱, 岑可法. 不同热分析方法求解无烟煤燃烧反应动力学参数的研究[J]. 动力工程, 2005, 25: 493)
[14] Ren N, Zhang J J.Progress in datum treatment methods of thermal analysis kinetics[J]. Progr. Chem., 2006, 18: 410
[14] (任宁, 张建军. 热分析动力学数据处理方法的研究进展[J]. 化学进展, 2006, 18: 410)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.