Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 451-457    DOI: 10.11901/1005.3093.2015.608
  本期目录 | 过刊浏览 |
共沉淀时间对BiFeO3粉体制备及陶瓷性能的影响
程振宇,代建清(),刘浩飞,王志翔,李亚,张瑞浩
昆明理工大学材料科学与工程学院 昆明 650093
The Influences of Co-precipitation Time on the Preparation of BiFeO3 Powders and Properties of BiFeO3 Ceramics
Zhenyu CHENG,Jianqing DAI(),Haofei LIU,Zhixiang WANG,Ya LI,Ruihao ZHANG
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

程振宇,代建清,刘浩飞,王志翔,李亚,张瑞浩. 共沉淀时间对BiFeO3粉体制备及陶瓷性能的影响[J]. 材料研究学报, 2017, 31(6): 451-457.
Zhenyu CHENG, Jianqing DAI, Haofei LIU, Zhixiang WANG, Ya LI, Ruihao ZHANG. The Influences of Co-precipitation Time on the Preparation of BiFeO3 Powders and Properties of BiFeO3 Ceramics[J]. Chinese Journal of Materials Research, 2017, 31(6): 451-457.

全文: PDF(3288 KB)   HTML
摘要: 

控制Bi与Fe摩尔比为Bi:Fe=1.03:1,在其它实验条件不变的情况下,研究共沉淀时间对前驱体的制备及其陶瓷块材性能的影响。结果表明,共沉淀时间为95 h时得到纯相BiFeO3粉体且粒度分布均匀;采用放电等离子烧结(spark plasma sintering,SPS)的方法制备出高密度BiFeO3(相对密度98.3%)陶瓷块材并测试了它们的介电性能和铁电性能。结果表明在频率为30 MHz时,样品介电常数ε'最大为106.5,介电损耗tanδ最小为0.006,并在室温下检测到了饱和的电滞回线,饱和极化强度为0.4 μC/cm2

关键词 无机非金属材料共沉淀法反应时间铁酸铋放电等离子烧结    
Abstract

The mol ratio between Bi element and Fe element was determined to be 1.03:1. The influences of co-precipitation time on the preparation of its precursor powders and properties of single-phase BiFeO3 ceramics were researched when other conditions were fixed. The results indicated that: the pure single-phase BiFeO3 powders was obtained at the reaction time of 95 h and the particle size was uniform. The high density BiFeO3 (the relative density 98.3%) ceramics samples were prepared by spark plasma sintering (SPS) and then their dielectric properties and ferroelectric properties were measured. And the result showed that it also had the maximum dielectric constant 106.5 and the minimum dielectric loss 0.006 at the frequency of 30 MHz. The saturated electric hysteresis loop was detected at room temperature too, the saturated polarization is 0.4 μC/cm2.

Key wordsinorganic non-metallic materials    co-precipitation    reaction time    BiFeO3    spark plasma sintering
收稿日期: 2016-03-17     
基金资助:国家自然科学基金(51162019, 51462019)
图1  (a)颗粒平均粒径(D50)随时间的变化趋势;(b)颗粒分布宽度(SPAN)随时间的变化趋势
图2  不同反应时间的BiFeO3的XRD图谱
图3  不同反应时间BiFeO3粉体的SEM图像
图4  不同反应时间的BiFeO3陶瓷密度(a)和BiFeO3陶瓷XRD图谱(b)
图5  不同反应时间的BiFeO3陶瓷SEM图像
图6  不同反应时间的BiFeO3陶瓷的介电常数(a)和介电损耗(b)
t/h ε' (30 MHz) tanδ (30 MHz)
45 67.7 0.029
95 106.5 0.006
150 66.3 0.038
表1  不同反应时间的BiFeO3陶瓷在30 MHz时的介电常数和介电损耗
t/h Ps /μCcm-2 Pr /μCcm-2 Voltage/V
45 0.20 0.08 760
95 0.40 0.14 2690
150 0.33 0.14 2824
表2  不同反应时间的BiFeO3陶瓷的铁电参数
图7  不同反应时间的BiFeO3陶瓷的电滞回线
[1] Zhang J X, Yu P.Magnetics, Electrics and magnetoelectric coupling properties of multiferroic BiFeO3[J]. B. Chin. Ceram. Soc., 2013, 41(7): 905
[1] (张金星, 于浦. 多铁性材料BiFeO3的磁学、电学性质及磁电耦合效应[J]. 硅酸盐学报, 2013, 41(7): 905)
[2] Huang F Z, Wang Z J, Lu X M, et al.Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure[J]. Sci. Rep., 2013, (3): 2097
[3] Ding H C, Duan C G.Electric-field control of magnetic ordering in the tetragonallike BiFeO3[J]. Europhys. Lett., 2012, 97(5): 57007
[4] Bea H, Bibes M, Cherifi S, et al.Tunnel Magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films[J]. Appl. Phys. Lett., 2006, 89(24): 242114
[5] Bea H, Gajek M, Bibe M, et al.Spintronics with multiferroics[J]. J. Phys.: Condens. Matter., 2008, 20(43): 434221
[6] Zhang J X, He Q, Trassin M, et al.Microscopic origin of the giant ferroelectric polarization in tetragonallike BiFeO3[J]. Phys. Rev. Lett., 2011, 107(14): 147602
[7] Smolenskii G A, Agranovska Y A, Isupov V A.New ferroelectrics of complex composition: Pb2MgWO6, Pb3Fe2WO9 and Pb2FeTaO6[J]. Soviet Physics-Solid State, 1958, 3: 1981
[8] Ke H, Wang W, Wang Y, et al.Factors controlling pure phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation[J]. J. Alloys Compd., 2011, 509(5): 2192
[9] Awan M, Bhatti A, Mater J.Synthesis and multiferroic properties of BiFeO3 ceramics by melt-Phase sintering[J]. J. Mater. Eng. Perform., 2011, 20(2): 283
[10] Puli V S, Kumar A, Panwar N, et al.Transition metal modified bulk BiFeO3 with improved magne tization and linear magnetoelectric coupling[J]. J. Alloys Compd., 2011, 509(32): 8223
[11] Zhang X, Bourgeois L, Yao J, et al.Tuning the morphology of bismuth ferrite nano-powders and microcrystals: from sheets to fibers[J]. Small, 2007, 3(9): 1523
[12] Yasin Shami M, Awan M S, Anis-Ur-Rehman M. Phase pure synthesis of BiFeO3 nano-powders using diverse precursor via co-precipitation method[J]. J. Alloys Compd., 2011, 509: 10139
[13] Shokrollahi H.Magnetic, Electrical and structural characteriza tion of BiFeO3 nano-particles synthesized by co-precipitation[J]. Powder Technol., 2013, 235: 953
[14] Muneeswaran M, Jegatheesan P, Gopiraman M, et al.Structural, optical and multiferroic properties of single-phased BiFeO3[J]. Appl Phys A-Mater., 2014, 114(3): 853
[15] Mazumder R, Chakravarty D, Bhattacharya D.Spark plasma sintering of BiFeO3[J]. Mater. Res. Bull., 2009, 44(3): 555
[16] Dai Z H, Akishige Y.BiFeO3 ceramics synthesized by spark plasma sintering[J]. Ceram. Int., 2012, 38: 403
[17] Yu Z W, Miao H Y, Tan G Q.Research of Bi25FeO40 na-no-powders synthesized by hydrothermal method[J]. Mater. Sci. Technol., 2009, 17(6): 757
[17] (于志伟, 苗鸿雁, 谈国强. 水热法合成Bi25FeO40纳米粉体的研究[J]. 材料科学与工艺, 2009, 17(6): 757)
[18] Kumar M, Yadav K L, Varma G D.Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics[J]. Mater. Lett., 2008, 62(8/9): 1159
[19] Shami M Y, Awan M S, Rehman M.The effect of heat treatment on structural and multiferroic properties of phase-pure BiFeO3[J]. J. Electron. Mater., 2012, 41(8): 2216
[20] Zhang H F, Yao X L, Zhang Y.Microstructure and dielectric properties of barium strontium titanate thick films and ce-ramics with a concretelike structure[J]. J. Am. Ceram. Soc., 2006, 90: 2333
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.