Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (4): 241-247    DOI: 10.11901/1005.3093.2013.956
  本期目录 | 过刊浏览 |
压延铜箔轧制压下率与组织织构和耐弯折性能的关系*
刘雪峰1,3(),李晶琨1,汪汐涌1,谢建新2,3
1. 北京科技大学材料科学与工程学院 北京 100083
2. 北京科技大学材料先进制备技术教育部重点实验室 北京 100083
3. 北京科技大学现代交通金属材料与加工技术北京实验室 北京 100083
Relations of Rolling Reduction and Microstructure, Texture and Bending Property of Rolled Copper Foils
Xuefeng LIU1,3,**(),Jingkun LI1,Xiyong WANG1,Jianxin XIE2,3
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2. Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083
3. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083
引用本文:

刘雪峰,李晶琨,汪汐涌,谢建新. 压延铜箔轧制压下率与组织织构和耐弯折性能的关系*[J]. 材料研究学报, 2014, 28(4): 241-247.
Xuefeng LIU, Jingkun LI, Xiyong WANG, Jianxin XIE. Relations of Rolling Reduction and Microstructure, Texture and Bending Property of Rolled Copper Foils[J]. Chinese Journal of Materials Research, 2014, 28(4): 241-247.

全文: PDF(6841 KB)   HTML
摘要: 

采用退火态轧制铜带为原料, 进行不同压下率的箔轧, 研究箔轧压下率与铜箔组织织构及耐弯折性能的关系, 并探讨其机理。结果表明, 铜箔微观组织由沿轧制方向被拉长的扁平状晶粒组成, 相邻晶界间距平均值随着箔轧压下率增大而显著减小; 当箔轧压下率为90.7%时, 铜箔相邻晶界间距平均值仅为0.52 μm。铜箔轧制织构以铜型、S型和黄铜型织构为主。随着压下率的增大, 轧制织构整体强度增大, 取向不断集中。当箔轧压下率为90.7%时, 铜箔的耐弯折性能最好, 疲劳寿命可超过300次。大的箔轧压下率使得铜箔的晶粒尺寸更薄及取向更集中是铜箔耐弯折性能提高的根本原因。

关键词 金属材料压延铜箔轧制压下率组织织构耐弯折性能机理    
Abstract

Annealed pure copper strips were taken as raw materials, and after the processes of foil rolling, the rolled copper foils were fabricated. The effect of foil rolling reduction on microstructure, texture and bending property of the rolled copper foils was studied. The results show that the cross-sectional microstructure of the rolled copper foil consists of elongated grains and the adjacent grain boundaries spacing gradually decreases with the increase of the rolling reduction. When the reduction reaches 90.7%, the adjacent grain boundaries spacing is only 0.52 μm. Rolling textures of the rolled copper foils mainly consist of C, S and B orientation components. With the increase of reduction, the whole intensity of rolling texture increased, and the orientation concentrated continuously. The rolled copper foil with reduction of 90.7% has the best bending resistance, whose fatigue life is more than 300 times. The basic reason for the enhancement in bending performance of copper foils may be that a great foil rolling reduction makes their grains much thinner and their texture highly intensified.

Key wordsmetallic materials    rolled copper foil    rolling reduction    microstructure and texture    bending property    mechanism
收稿日期: 2013-12-18     
基金资助:* 国家科技支撑计划2011BAE23B02和中央高校基本科研业务费FRF-TP-10-002B资助项目。
图1  耐弯折性能测试示意图
图2  退火态轧制铜带及不同压下率轧态铜箔的纵截面微观组织
图3  退火态轧制铜带及不同压下率铜箔位错组态及密度
图4  退火态轧制铜带及不同压下率铜箔的ODF图
图5  铜箔轧制织构取向线分析
Reduction Bending times before fracture
The first experiment The second experiment The third experiment Average value
74.7% 101 112 98 103
82.0% 246 238 236 240
90.7% 289 301 295 295
表1  轧态铜箔断裂前弯折次数
图6  不同厚度轧态铜箔弯曲表面裂纹形貌
1 A. Diehl, U. Engel, M. Geiger,Mechanical properties and bending behaviour of metal foils, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(1), 83(2008)
2 G. T. Gray, A. W. Thompson, J. C. Williams,Influence of microstructure on fatigue crack initiation in fully pearlitic steels, Metallurgical Transactions A, 16(5), 753(1985)
3 E. Hornbogen, K. H. Z. Gahr,Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy, Acta Metallurgica, 24(6), 581(1976)
4 G. M. Lin, M. E. Fine,Effect of grain size and cold work on the near threshold fatigue crack propagation rate and crack closure in iron, Scripta Metallurgica, 16(11), 1249(1982)
5 M. Sarwar, E. Ahmad, T. Manzoor,Effect of grain size and load ratio on the near threshold stress intensity factor during fatigue crack propagation of dual phase steel, Key Engineering Materials, 510, 67(2012)
6 T. Hatano, Y. Kurosawa, J. Miyake,Effect of material processing on fatigue of FPC rolled copper foil, Journal of Electronic Materials, 29(5), 611(2000)
7 N. Hansen,Cold deformation microstructures, Materials Science and Technology, 6(11), 1039(1990)
8 A. M. Hodge, Y. M. Wang, T. W. Barbee Jr.,Mechanical deformation of high-purity sputter-deposited nano-twinned copper, Scripta Materialia, 59(2), 163(2008)
9 T. Muroga, Y. Ito, K. Aoyagi, Y. Yamamoto, K. Yokomizo, K. Nomura,Rolled copper foil and manufacturing method thereof, United States Patent, 0099110A1(2008)
10 Y. Kurosawa, T. Hatano,Rolled copper foil and its manufacturing process, Japan Patent, 262296A(2001)
11 N. Nozaki, M. Doyama, Y. Kogure,Plastic deformation of copper thin foils, Thin Solid Films, 424(1), 88(2003)
12 H. D. Merchant, M. G. Minor, Y. L. Liu,Mechanical fatigue of thin copper foil, Journal of Electronic Materials, 28(9), 998(1999)
13 A. Lasalmonie, J. L. Strudel,Influence of grain size on the mechanical behaviour of some high strength materials, Journal of Materials Science, 21(6), 1837(1986)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.