Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 325-332    DOI: 10.11901/1005.3093.2013.777
  本期目录 | 过刊浏览 |
赤泥-煤矸石基中钙体系胶凝材料的水化特性*
张娜1,刘晓明2(),孙恒虎1,3
1. 清华大学建筑设计研究院有限公司绿色建材与循环经济研究中心 北京 100084
2. 北京科技大学冶金与生态工程学院 北京 100083
3. 美国太平洋大学太平洋资源研究中心 加利福尼亚州 95211
Hydration Characteristics of Intermediate-Calcium Based Cementitious Materials from Red Mud and Coal Gangue
Na ZHANG1,Xiaoming LIU2,**(),Henghu SUN1,3
1. Green Construction Materials and Circulation Economy Center, Architectural Design and Research Institute of Tsinghua University Co., Ltd., Beijing 100084
2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
3. Pacific Resources Research Center, University of the Pacific, Stockton, CA 95211, USA
引用本文:

张娜,刘晓明,孙恒虎. 赤泥-煤矸石基中钙体系胶凝材料的水化特性*[J]. 材料研究学报, 2014, 28(5): 325-332.
Na ZHANG, Xiaoming LIU, Henghu SUN. Hydration Characteristics of Intermediate-Calcium Based Cementitious Materials from Red Mud and Coal Gangue[J]. Chinese Journal of Materials Research, 2014, 28(5): 325-332.

全文: PDF(2050 KB)   HTML
摘要: 

采用XRD、IR、TG-DTA、MIP等手段表征赤泥-煤矸石基中钙体系胶凝材料的水化产物及其硬化浆体的孔结构, 研究了解赤泥-煤矸石基中钙体系胶凝材料的水化特性。结果表明, 赤泥-煤矸石基中钙体系胶凝材料的水化产物主要有C-S-H凝胶、钙矾石和Ca(OH)2, 前两者对其强度的发展有促进作用; 水化1 d至90 d其中Ca(OH)2的含量呈先升高后降低的趋势; 随着水化反应的进行在CaO/SiO2比值较低的赤泥-煤矸石基中钙体系胶凝材料中Si-OH基团之间发生聚合反应, 水化产物的聚合度升高; CaO/SiO2比值为0.95和1.04的赤泥-煤矸石基中钙体系胶凝材料的硬化浆体具有较好的孔结构, 而CaO/SiO2比值为1.13的胶凝材料硬化浆体的孔结构相对较差。

关键词 无机非金属材料中钙体系胶凝材料微观结构赤泥煤矸石水化    
Abstract

In order to deep understand the hydration characteristics of red mud-coal gangue based intermediate-calcium cementitious materials, XRD, IR, TG-DTA and MIP techniques were used to investigate the hydration products and pore structure of the hardened pastes, which formed after a hydration process of the red mud-coal gangue based intermediate-calcium cementitious materials. The results show that the hydration products mainly are C-S-H gel, ettringite and calcium hydroxide. As the dominant products, C-S-H gel and ettringite are principally responsible for the strengthening of the intermediate-calcium cementitious materials. By hydration for 1 d to 90 d, the content of calcium hydroxide increases at the initial stage and later decreases. With the progress of hydration process, the polymerization between Si-OH bonds tends to be easier, resulting in an increasing of polymerization degree of the hydration products. The red mud-coal gangue based intermediate-calcium cementitious materials with CaO/SiO2 ratios of 0.95 and 1.04 possess good pore structure of the hardened pastes, while the pore structure of the hardened paste for the material with CaO/SiO2 ratio of 1.13 is relatively poor.

Key wordsinorganic nonmetallic materials    intermediate-calcium based cementitious materials    microstructure    red mud    coal gangue    hydration
收稿日期: 2013-10-18     
基金资助:* 国家自然科学基金51302012和北京市科技专项-首都设计提升计划Z131110000213046。
Oxides SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O TiO2 SO3 LOI
Red mud 17.78 6.27 37.52 12.32 1.15 2.75 0.46 3.27 0.49 17.76
Coal gangue 49.41 21.32 2.52 6.02 1.56 1.44 2.85 0.94 0.65 12.75
Slag 33.59 14.37 38.32 1.11 8.43 0.18 0.11 0.85 2.26 0.44
Clinker 21.94 5.27 66.09 2.96 0.88 0.30 0.70 - 0.31 0.67
表1  原料的化学组成 (质量分数/%)
Sample Compound activated red mud-coal gangue Slag Clinker Gypsum
O 50 24 20 6
A 45 24 25 6
B 40 24 30 6
表2  赤泥-煤矸石基中钙体系胶凝材料的物料配比(质量分数/ %)
Sample CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O TiO2 SO3 Ca/Si (Ca+Mg)/ (Si+Al)
O 32.94 34.70 12.77 7.61 4.53 1.57 1.26 1.97 2.66 0.95 0.79
A 35.93 34.69 10.96 6.27 3.85 1.59 1.22 1.64 3.28 1.04 0.87
B 37.78 33.53 10.58 5.63 4.06 1.36 1.14 1.48 3.91 1.13 0.95
表3  赤泥-煤矸石基中钙体系胶凝材料的化学组成(质量分数/ %)
图1  胶凝材料水化3 d硬化浆体的XRD谱图
图2  胶凝材料水化90 d硬化浆体的XRD谱图
图3  O试样不同水化龄期硬化浆体的IR谱图
图4  A试样不同水化龄期硬化浆体的IR谱图
图5  B试样不同水化龄期硬化浆体的IR谱图
图6  O、A、B试样3 d水化产物中波数位于4000 cm-1~3000 cm-1的IR谱图
图7  O、A、B试样90 d水化产物中波数位于4000 cm-1~3000 cm-1的IR谱图
图8  O试样28 d硬化浆体的TG-DTA曲线
图9  A试样28 d硬化浆体的TG-DTA曲线
图10  B试样28 d硬化浆体的TG-DTA曲线
图11  O、A、B试样不同龄期C-S-H凝胶和AFt的质量损失
图12  O、A、B试样不同龄期Ca(OH)2的质量损失
Sample Total pore volume (mL/g) Porosity (%) Pore size distribution (%)
<10 nm 10~50 nm 50 nm~1 μm >1 μm
O 0.2199 34.60 27.88 51.34 18.01 2.77
A 0.1861 29.44 28.75 56.80 12.20 2.26
B 0.1785 32.92 24.43 40.00 28.80 6.78
表4  O、A、B试样水化90 d硬化浆体的孔结构
图13  不同水化龄期硬化浆体的平均孔径
图14  不同水化龄期硬化浆体的最可几孔径
1 X. Liu, N. Zhang, H. Sun, J. Zhang, L. Li,Structural investigation relating to the cementitious activity of bauxite residue–red mud, Cem. Concr. Res., 41, 847(2011)
2 M. Singh, S. N. Upadhayay, P. M. Prasad,Preparation of special cements from red mud, Waste Manage., 16, 665(1996)
3 M. Singh, S. N. Upadhayay, P. M. Prasad,Preparation of iron rich cements using red mud, Cem. Concr. Res., 27, 1037(1997)
4 Z. Pan, L. Cheng, Y. Lu, N. Yang,Hydration products of alkali-activated slag-red mud cementitious material, Cem. Concr. Res., 32, 357(2002)
5 P. E. Tsakiridis, S. Agatzini-Leonardou, P. Oustadakis,Red mud addition in the raw meal for the production of Portland cement clinker, J. Hazard. Mater., 116, 103(2004)
6 I. Vangelatos, G. N. Angelopoulos, D. Boufounos,Utilization of ferroalumina as raw material in the production of Ordinary Portland Cement, J. Hazard. Mater., 168, 473(2009)
7 N. Zhang, X. Liu, H. Sun, L. Li,Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: Properties and hydration characteristics, J. Hazard. Mater., 185, 329(2011)
8 X. Liu, N. Zhang,Utilization of red mud in cement production: A review., Waste Manage. Res., 29(10), 1053(2011)
9 ZHANG Na,SUN Henghu, ZHANG Jixiu, WAN Jianhua, Effect of multiplex thermal activation on cementitious behavior of red mud-coal gangue, Rare Metal Materials and Engineering, 38(S2), 663(2009)
9 (张 娜, 孙恒虎, 张吉秀, 万建华, 复合热活化对赤泥-煤矸石胶凝性能的影响, 稀有金属材料与工程, 38(S2), 663(2009)
10 N. Zhang, X. Liu, H. Sun, L. Li,Pozzolanic behaviour of compound-activated red mud-coal gangue mixture, Cem. Concr. Res., 41, 270(2011)
11 N. Zhang, H. Sun, X. Liu, J. Zhang,Early-age characteristics of red mud-coal gangue cementitious material, J. Hazard. Mater., 167, 927(2009)
12 JIANG Weiming, Alkali-activated cementitious materials-mechanisms microstructure and properties (Pennsylvania, The Pennsylvania State University, 1997) p.114
13 X. Liu, N. Zhang, Y. Yao, H. Sun, H. Feng,Micro-structure characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials, J. Hazard. Mater., 262, 428(2013)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.